Baseline Monitoring Document and As-Built Baseline Report

FINAL

Pee Dee Stream Restoration Site NCDMS Contract No. 004644 NCDMS Project No. 95350 Montgomery County, North Carolina Data Collected: 3/23 – 4/23/2015 Date Submitted: July 10, 2015

Submitted to: North Carolina Division of Mitigation Services NCDENR-DMS, 1652 Mail Service Center Raleigh NC 27699-1652 Prepared for:

302 Jefferson Street, Suite 110 Raleigh, North Carolina 27605

Prepared by:

37 Haywood Street, Suite 100 Asheville, NC 28801

Executive Summary

The Pee Dee Stream Restoration Site (Site) is located in the Yadkin River Watershed (NCDWQ sub-basin 03-07-10 and HUC 03040104020020) approximately 1 mile south of the town of Pee Dee, NC in Montgomery County at Latitude 35.255572° N and Longitude 80.028665° W. The Site encompasses approximately 18.6 acres of predominately agricultural land and includes three tributaries to Clarks Creek – Thompson Creek, Dale Branch and Jerry Branch.

Through the North Carolina Division of Mitigation Services full-delivery process, Resource Environmental Solutions, LLC, generated a total of 6,504 stream mitigation units through Priority I Restoration and Enhancement of the above listed streams. The goal of the project was to address stressors identified in the Targeted Local Watershed Plan such as improving water quality, aquatic and terrestrial habitat, and flood flow attenuation. The goals were addressed by restoring stable channel morphology and sediment transport capacity, improving stream bed form and habitat, improving stream bank stabilization, and providing riparian buffer restoration by re-establishing a native plant community within the easement.

Historic land use at the Site has consisted primarily of livestock grazing and dairy farm operations. Additional land use practices, including the maintenance and removal of riparian vegetation and the relocating, dredging, and straightening of on-site streams have contributed to unstable channel characteristics and degraded water quality.

The project site was delineated into four components totaling 6,710 linear feet: Thompson Creek 1(243 feet), Thompson Creek 1-2 (1,349 feet), Dale Branch 1 (375 feet), Dale Branch 2-5 (2,993 feet), Jerry Branch (1,691 feet), Hudson Branch (59 feet). Dale Branch 1 and Thompson Creek 1 received Enhancement I while the remaining components received Priority I Restoration. The installation of brush, rock, and wood structures were utilized throughout the restored reaches to provide bed and bank stability as well as aquatic habitat. On Thompson 1, the pond outlet was lowered enough to allow the reformation of a channel in the pond bottom. On Dale 1, the breach in the dam was stabilized in order to prevent degradation of the wetland that formed in the abandoned pond bottom. All components were designed as Type B4 or B5 streams. These channel configurations provide a stable pattern and natural form based on the Type II colluvial valleys where the streams are found.

A baseline stream and topographic survey was performed between March 23 and April 23, 2015 to document baseline conditions at the site. In general, stream pattern, profile, and dimension were similar to those values outlined in the design. The survey revealed that Thompson Branch was built 0.5 feet lower in elevation than designed; however, the deviation was maintained throughout the length of Thompson Creek. The channel and associated slopes were constructed as designed and the error, occurring during construction stakeout, should not affect stream stability.

A vegetation survey at the Site was conducted on April 14, 2015. Results from the initial survey indicate that planted stem density ranged between 810 and 1,139 stems per acre with the mean density of 922 stems per acre across all plots for MY0. A total of nine species were documented across all plots with species diversity within the plots ranging between 2 and 8. At the time of vegetation data collection, herbaceous vegetation had begun to establish. Additionally, good recruitment from woody vegetation is expected due to the presence of mature trees within the easement.

Table of Contents

1 1
1
1
2
4
4
4
5
5
5
5
5
5
6
6
7
7
8
8
5
5

1.0 PROJECT GOALS, BACKGROUND, AND ATTRIBUTE

1.1. Location and Setting

The Pee Dee Stream Restoration Site (Site) encompasses approximately 18.6 acres of predominately agricultural land and includes three tributaries to Clarks Creek – Thompson Creek, Dale Branch and Jerry Branch. The Site is located in the Yadkin River Watershed (NCDWQ sub-basin 03-07-10 and HUC 03040104020020) approximately 1 mile south of the town of Pee Dee, NC in Montgomery County (Figure 1). Clarks Creek is listed as a Class C water (NCDWR) and flows into the Pee Dee River. The Site is located within a NCDMS targeted local watershed.

The project area is located in the Carolina Slate Belt Level IV ecoregion, comprised of mineral rich metavolcanic and metasedimentary rocks with slatey clavage. All three project reaches lay within Type II colluvial valleys with structurally influenced valley morphology. Historic land use at the Site has consisted primarily of livestock grazing and dairy farm operations. Additional land use practices, including the maintenance and removal of riparian vegetation and the relocating, dredging, and straightening of on-site streams have contributed to unstable channel characteristics and degraded water quality.

1.2. Project Goals and Objectives

The project goals address stressors identified in the TLW and include the following:

- Improve water quality within the restored channel reaches and downstream watercourses by reducing sediment and nutrient inputs and increasing dissolved oxygen levels
- Improve local aquatic and terrestrial ecological function via stream shading, habitat complexities, and organic/woody material introduction
- Improve aquatic and benthic macroinvertebrate habitat and associated stream bed form
- Improve site hydrology and attenuate flood flows on-site and downstream
- Provide approximately 18.6 acres of riparian area restoration with a native plant community
- Protect stream and riparian improvements with livestock best management practices
- Protect the site in perpetuity with a permanent conservation easement

The project goals will be addressed through the following project objectives:

- Implement Priority I or II restoration of 5,992 feet of stream and enhancement of 625 feet of stream
- Implement appropriate changes in dimension, pattern and/or profile to create geomorphologically stable conditions along project area reaches
- Modify degraded stream channels to enable proper sediment transport capacity and improved stream bed character
- Construct a floodplain bench that is accessible at the proposed bankfull channel elevation.
- Remove a major impoundment
- Integrate in-stream structures and native bank vegetation

- Plant native woody and herbaceous riparian vegetation with a minimum width of 50 feet from the edge of the restored channels
- Eradicate invasive, exotic or undesirable plant species
- Install cattle exclusion fencing, two new wells, two new cattle drinking stations, and upgrade eight existing cattle drinking stations

1.3. Project Structure, Restoration Type and Approach

1.3.1. Project Structure

Construction of the Pee Dee Stream Restoration Project produced a total of 6,092 feet of restoration and 618 feet of enhancement, as outlined in Table 1 and depicted in Figure 2. The project site was delineated into four components totaling 6,710 linear feet: Thompson Creek 1(243 feet), Thompson Creek 1-2 (1,349 feet), Dale Branch 1 (375 feet), Dale Branch 2-5 (2,993 feet), Jerry Branch (1,691 feet), Hudson Branch (59 feet).

1.3.2. Restoration Type and Approach

Thompson Creek

Thompson Creek is divided into three main reaches; Reach 1 is located upstream of the old pond dam, Reach 2 extends from the pond down to the existing pipe crossing, Reach 3 is downstream of the existing pipe crossing.

Reach 1 was constructed as a semi-passive restoration of a Type B5c stream through the pond bottom. The earthen dam was breached in stages to drain the remaining surface water and expose the pond bottom sediments. The pond outlet was lowered just enough to permit the reformation of a channel in the pond bottom but not to the extent that stored sediments are eroded from the old pond. Log sill structures were installed in strategic locations especially near the upstream end of the pond in order to stabilize the bed profile. Channel reconstruction was not performed in this reach since construction access into the pond bottom would be difficult if not impossible. By breaching the dam, Thompson Creek is reconnected as a stream corridor. This restores stream functions such as floodplain connectivity and sediment transport, as well as improve aquatic habitat. By removing a stagnant agricultural pond and restoring Thompson Creek back to a stable stream corridor an overall functional uplift has occurred.

Reach 2 used a Priority I approach and was constructed as a Type B4 stream with moderate sinuosity and an average channel slope of 2.2%. Consideration was given to restoring the channel on its current grade since the stream is now running on bedrock in many locations and as a result the profile has stabilized. However, the presence of mature vegetation on the floodplain and the extent of grading and removal of topsoil that would be required dissuaded this approach. Instead the channel was reconnected with its historic floodplain through a combination of lifting in place and complete channel reconstruction. The proposed channel alignment was selected to incorporate existing mature vegetation where possible and to minimize its disturbance.

Thompson Creek is distinguished from Dale and Jerry Branch by the presence of large gravel and cobble bed material. This gravel and cobble was harvested and reused in the proposed channel. The use of this bed material will provide for a self-armored channel with a slope slightly less than the valley slope. The additional grade differential will be made up for through the use of boulder and log step structures.

Dale and Jerry Branch

The restoration approach for Dale and Jerry Branch was to reestablish the conditions that provided for the historic stability of these two streams. This involved reintroduction of extensive wood grade control and removal of livestock access. Due to the extent of degradation this required backfilling of the existing channels and reconstructing the proper channel dimensions. The disparity between the natural low-gradient slopes for streams with small gravel bed material (0.2% to 0.3%) and the moderately steep valley slopes (2% to 4%) was resolved by using logs to create small steps and then having relatively flat channel reaches between each log structure. Since logs were used as grade control the steps will be held to a maximum drop of 0.4 ft. Where site conditions exceeded the slope that can be accommodated within these limitations, a threshold design approach was used to establish an armored reach grade control.

Generally, the channels were restored as Type B4 streams using a Priority I approach which reconnected the channel to the historic floodplain. In some areas this involved filling and reconstructing the channel in its present position in the valley, while in other areas this required reconstructing the channel offset from the existing channel. There are a few locations, particularly upstream of the major headcuts where the stream is more stable and closer to proper position in the valley, where efforts were made to retain as much of the existing alignment as possible. In these areas log sills were used to adjust and stabilize the profile and the channel was raised in place.

Dale Branch

Dale Branch is divided into five reaches, based on significant changes in drainage area. Reach 1 is located at the upstream end; from the seep heads to the abandoned pond dam. Reach 2 extends from the pond to the existing timber crossing. Reach 3 extends from the timber crossing to main ephemeral tributary on the west side. Reach 4 is located downstream of the west tributary to the existing ford crossing and Reach 5 is downstream of the existing.

Reach 1 was enhanced by stabilizing existing banks and slopes near the seep heads, removal of invasive species and replanting of the riparian buffer. At the downstream end of Reach 1 the breach in the dam embankment was stabilized to prevent future headcutting and degradation of the wetland feature in the abandoned pond bottom. Reach 2 used a Priority I restoration approach by using a significant portion of the existing channel alignment and raising the channel in place. This reach required some alignment alterations to correct severe meanders or reduce bank scour potential.

Reaches 3, 4 and 5 used a Priority I restoration approach and followed the above described general approach with the exception of a few transitional reaches. One of these reaches is at the downstream end of Reach 5 which flows into the Clarks Creek floodplain. In this area a Priority II approach was required to transition down to the grade of Clarks Creek.

Jerry Branch

Jerry Branch is divided into three reaches; Reach 1 is located above the confluence with Hudson Branch. Reach 2 is located below the confluence with Hudson Branch and Reach 3 is located at the downstream end of the Site. All three reaches used a Priority I restoration approach and follow the above described general approach with the exception of a few transitional reaches. Similar to the downstream end of Dale, the lower end of Reach 3, which flows into the Clarks Creek floodplain, involve a Priority II approach to transition down to the grade of Clarks Creek.

Hudson Branch

Hudson Branch, constructed as a Type B4 stream, was restored using a Priority I approach. Hudson was raised in place using log sills to set the profile grade and backfilling the majority of the existing channel. Some channel reconstruction was required to properly connect Hudson to the restored Jerry Branch.

1.4. Project History, Contacts and Attribute Data

The project was first identified as a full-delivery mitigation project for the North Carolina Ecosystem Enhancement Program by Environmental Banc and Exchange, LLC [now Resource Environmental Solutions, LLC (RES)]. Project planning began in the fall of 2011 with the final mitigation plan completed in December 2013 and the final design and construction plans completed in January 2014. Construction and planting of the site was completed in April 2015. Project activities, reporting dates, project contacts, and background information are outlined in Tables 2-4 (Appendix A).

2.0 SUCCESS CRITERIA

2.1. Morphological Parameters and Channel Stability

Restored and enhanced streams shall be in compliance with the standards set forth in the USACE 2003 Stream Mitigation Guidelines and the "Ecosystem Enhancement Program Monitoring Requirements and Performance Standards for Stream and Wetland Mitigation" dated November 7, 2011. Restored and enhanced streams should demonstrate morphologic stability to be considered successful. Stability does not equate to an absence of change, but rather to sustainable rates of change or stable patterns of variation. Restored streams often demonstrate some level of initial adjustment in the several months that follow construction and some change/variation subsequent to that is also to be expected. However, the observed change should not be unidirectional such that it represents a robust trend. If some trend is evident, it should be very modest or indicate migration to a stable form.

2.1.1. Dimension

Cross-section measurements should indicate little change from the as-built cross-sections. If changes do occur, they will be evaluated to determine whether the adjustments are associated with increased stability or whether they indicate movement towards an unstable condition

2.1.2. Pattern and Profile

Measurements and calculated values should indicate stability with little deviation from as-built conditions and established morphological ranges for the restored stream type. Pool depths may vary from year to year, but the majority should maintain depths sufficient to be observed as distinct features in the profile. The pools should maintain their depth with flatter water surface slopes, while the riffles should remain shallower and steeper. Pattern measurements will not be collected unless conditions seem to indicate that a detectable change appears to have occurred based on profile and/or dimension measurements.

2.1.3. Substrate

Calculated D_{50} and D_{84} values should indicate coarser size class distribution of bed materials in riffles and finer size class distribution in pools. The majority of riffle pebble counts should indicate maintenance or coarsening of substrate distributions. Generally, it is anticipated that the bed material will coarsen over time.

2.1.4. Sediment Transport

Depositional features should be consistent with a stable stream that is effectively managing its sediment load. Point bar and inner berm features, if present, should develop without excessive encroachment of the channel. Isolated development of robust (i.e. comprised of coarse material and/or vegetated actively diverting flow) mid-channel or lateral bars will be acceptable. Likewise, development of a higher number of mid-channel or lateral bars that are minor in terms of their permanency such that profile measurements do not indicate systemic aggradation will be acceptable, but trends in the development of robust mid-channel or alternating bar features will be considered a destabilizing condition and may require intervention or have success implications.

2.2. Surface Water Hydrology

Monitoring of stream surface water stages should indicate recurrence of bankfull flow on average every 1 to 2 years. At a minimum, throughout the monitoring period, the surface water stage should achieve bankfull or greater elevations at least twice. The bankfull events must occur during separate monitoring years.

2.3. Vegetation

Riparian vegetation monitoring shall be conducted for a minimum of seven years to ensure that success criteria are met per USACE guidelines. Accordingly, success criteria will consist of a minimum survival of 320 stems per acre by the end of the Year 3 monitoring period, a minimum of 260 stems per acre at the end of Year 5 and a minimum of 210 stems per acre in Year 7. If monitoring indicates either that the specified survival rate is not being met or the development of detrimental conditions (i.e., invasive species, diseased vegetation), appropriate corrective actions will be developed and implemented.

3.0 MONITORING PLAN

3.1. Stream Channel Stability and Geomorphology

A total of 22 cross-sections, including 11 riffles and 11 pools, were installed upon completion of construction and will be monitored annually. The total number of cross-sections include four on Thompson Creek, eleven on Dale Branch, and seven on Jerry Branch. Data collected from annual monitoring will be compared with the as-built conditions to document the current state of the channel and any trends in the stream profile occurring throughout the monitoring period.

3.2. Stream Hydrology

A total of three crest gauges were installed on site. Crest gauges will be monitored quarterly to document highest stage for the monitoring interval and verify occurrences of bankfull events. In addition, observations of wrack and depositional features in the floodplain will be documented with photos.

3.3. Vegetation

Fourteen vegetation monitoring plots, approximately 0.025 acres individually, were established based on guidance given in the *CVS-EEP Protocol for Recording Vegetation Version 4.2* (Lee et al. 2008). Data was collected using the Level I protocol during initial baseline monitoring to document baseline conditions immediately after construction and planting. Subsequent annual vegetation will use the Level II protocol. Annual monitoring will determine planted vegetative success and the overall trajectory of

woody plant restoration and regeneration at the site. Vegetation monitoring plot corners were marked with t-posts and PVC conduit.

3.4. Permanent Photo Stations

Permanent photo stations were established at each cross-section to digitally document annual conditions of the left and right banks. Each vegetation monitoring plot includes a photo station taken diagonally from the origin towards the opposite plot corner. Additionally, 16 permanent photo stations were established throughout the project area to provide representative digital documentation of stream features and vegetation conditions. Permanent photo stations were marked with labeled wooden stakes and red flagging tape.

3.5. Maintenance and Contingency

RES and Equinox will monitor the site on a regular basis and shall conduct a physical inspection of the site a minimum of once per year throughout the post-construction monitoring period until performance standards are met. These site inspections may identify site components and features that require routine maintenance. Routine maintenance should be expected most often in the first two years following site construction and may include the following:

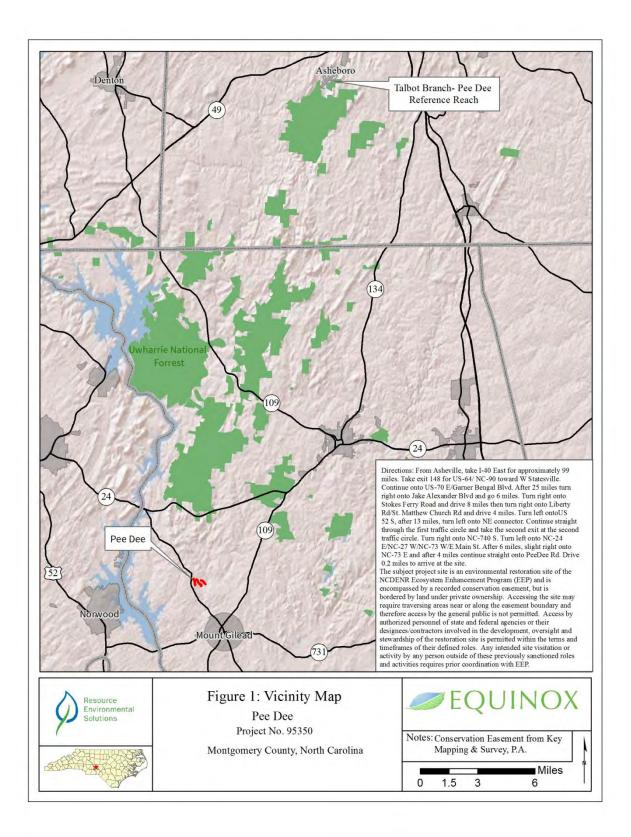
- *Stream* Routine channel maintenance and repair activities may include chinking of in-stream structures to prevent piping, securing of loose coir matting, and supplemental installations of live stakes and other target vegetation along the channel. Areas where storm water and floodplain flows intercept the channel may also require maintenance to prevent bank failures and head-cutting. Management of beaver activity will include removal of nuisance beavers and beaver dams that affect the stream.
- *Vegetation* Vegetation shall be maintained to ensure the health and vigor of the targeted plant community. Routine vegetation maintenance and repair activities may include supplemental planting, pruning, mulching, and fertilizing. Exotic invasive plant species shall be controlled by mechanical and/or chemical methods. Any vegetation control requiring herbicide application will be performed in accordance with NC Department of Agriculture (NCDA) rules and regulations.
- *Site Boundary-* Site boundaries shall be identified in the field to ensure clear distinction between the mitigation site and adjacent properties. Boundaries may be identified by fence, marker, bollard, post, tree-blazing, or other means as allowed by site conditions and/or conservation easement. Boundary markers disturbed, damaged, or destroyed will be repaired and/or replaced on an as needed basis. Boundary markings will comply with requirements of the RFP Addendum titled "Full Delivery Requirement for Completion of Survey for Conservations Easements" dated 7/21/11.
- *Road Crossing* Road crossings within the site may be maintained only as allowed by Conservation Easement or existing easement, deed restrictions, rights of way, or corridor agreements.
- *Stormwater Management Device* Storm water management devices will be monitored and maintained per the protocols and procedures defined by the NC Division of Water Quality Storm Water Best Management Practices Manual.

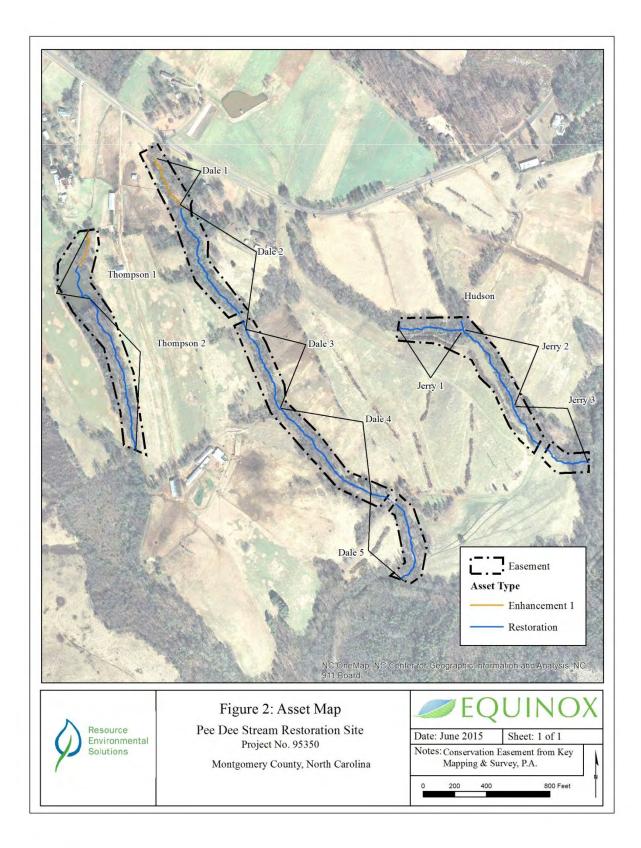
4.0 **BASELINE CONDITIONS**

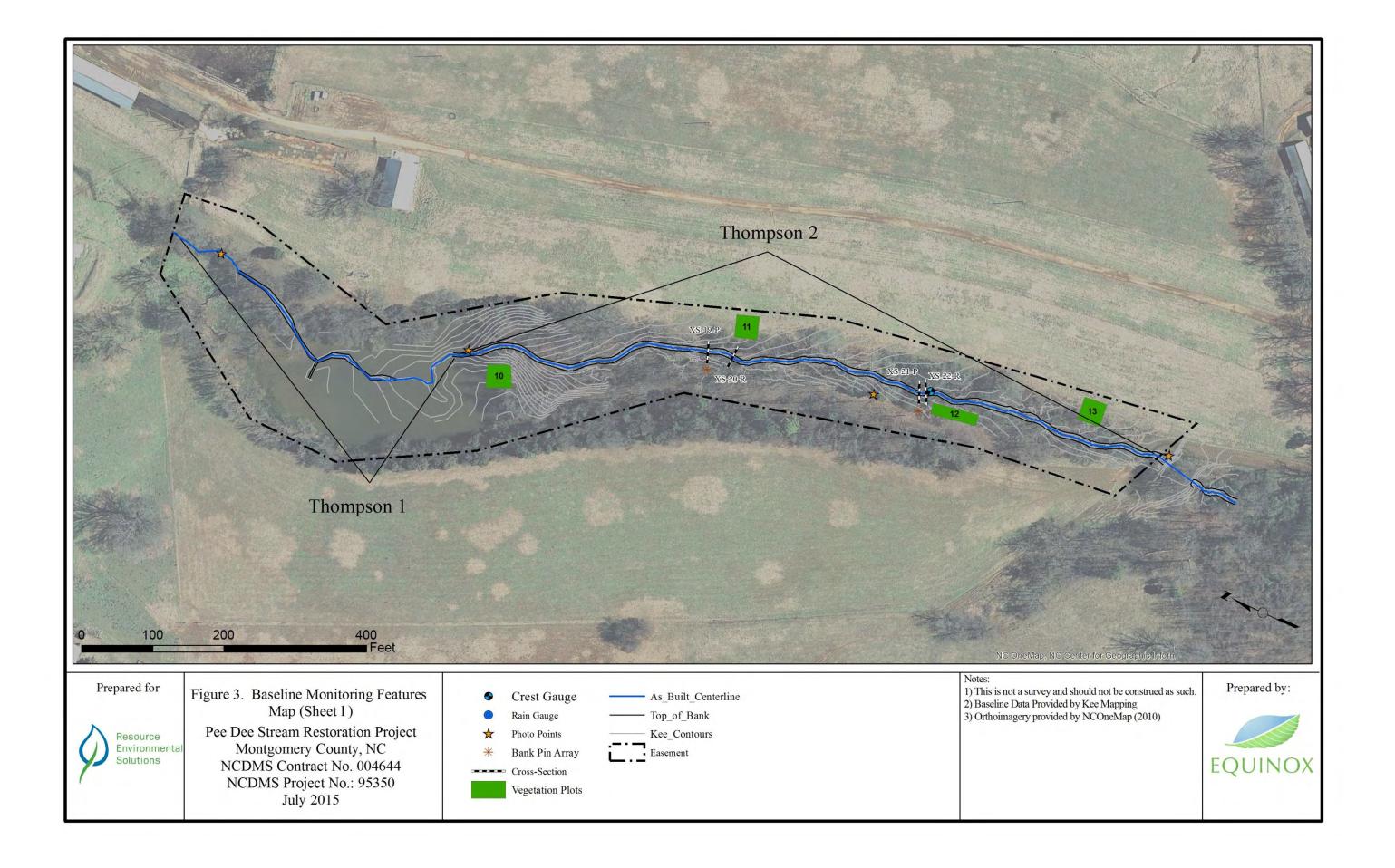
A baseline survey was performed between March 23, 2015 and April 23, 2015 to document baseline conditions at the site. A vegetation survey was conducted on April 14, 2015 to document planted vegetation after construction for future comparison.

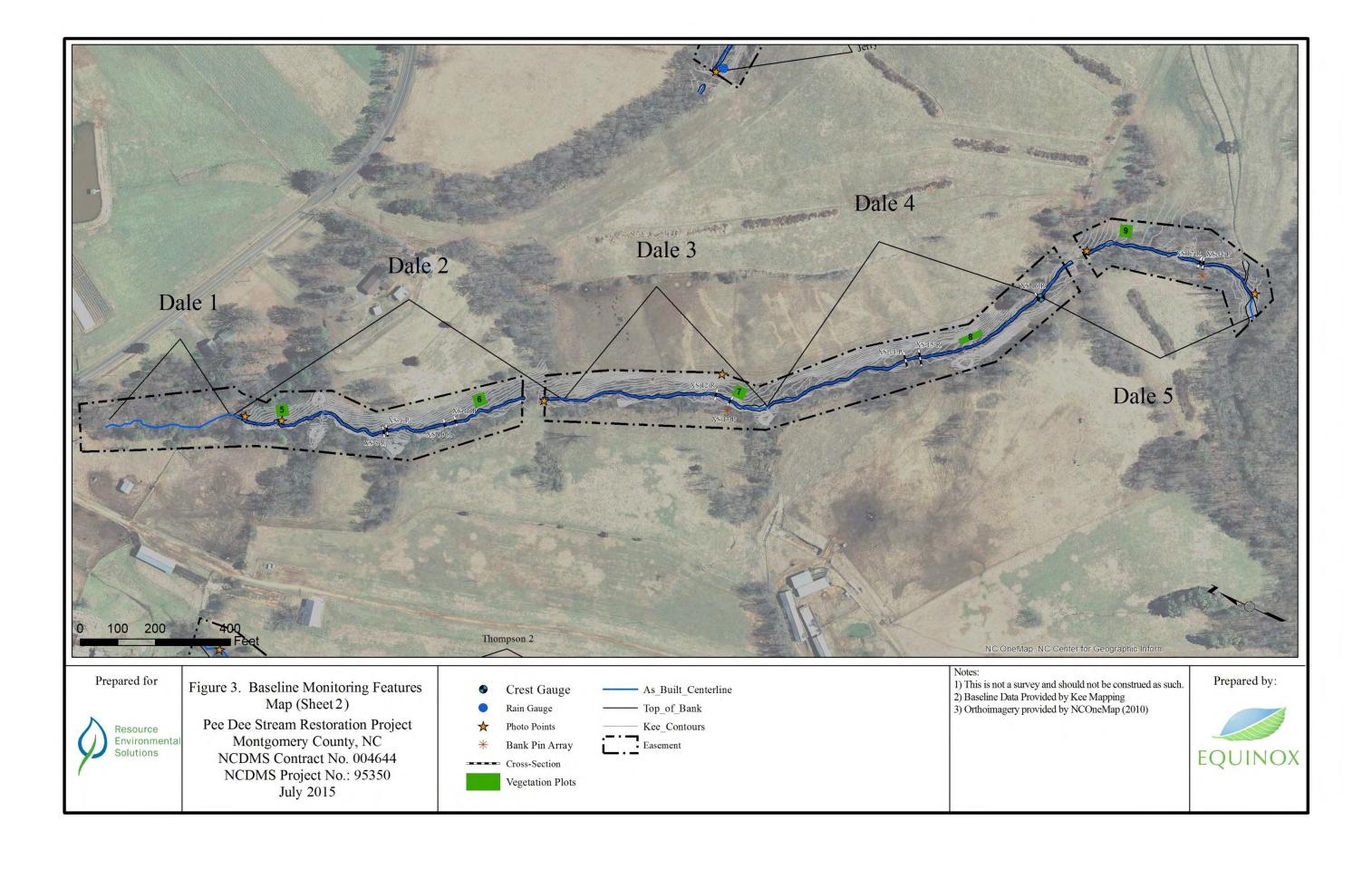
Reach summary tables, cross-section summary tables, and cross-section plots related to stream morphology can be found in Appendix B. Generally, the pattern, profile, and dimension were relatively similar to those values outlined in the design. Jerry Branch 1 had a noticeably flatter as-built slope of 0.027 ft/ft than the design slope of 0.037 ft/ft. However, the 0.037 ft/ft slope value listed in the design plans was the steepest in a range of slope values for the reach. The as-built of 0.027 slope falls within the range of 0.015-0.037 ft/ft for the reach.

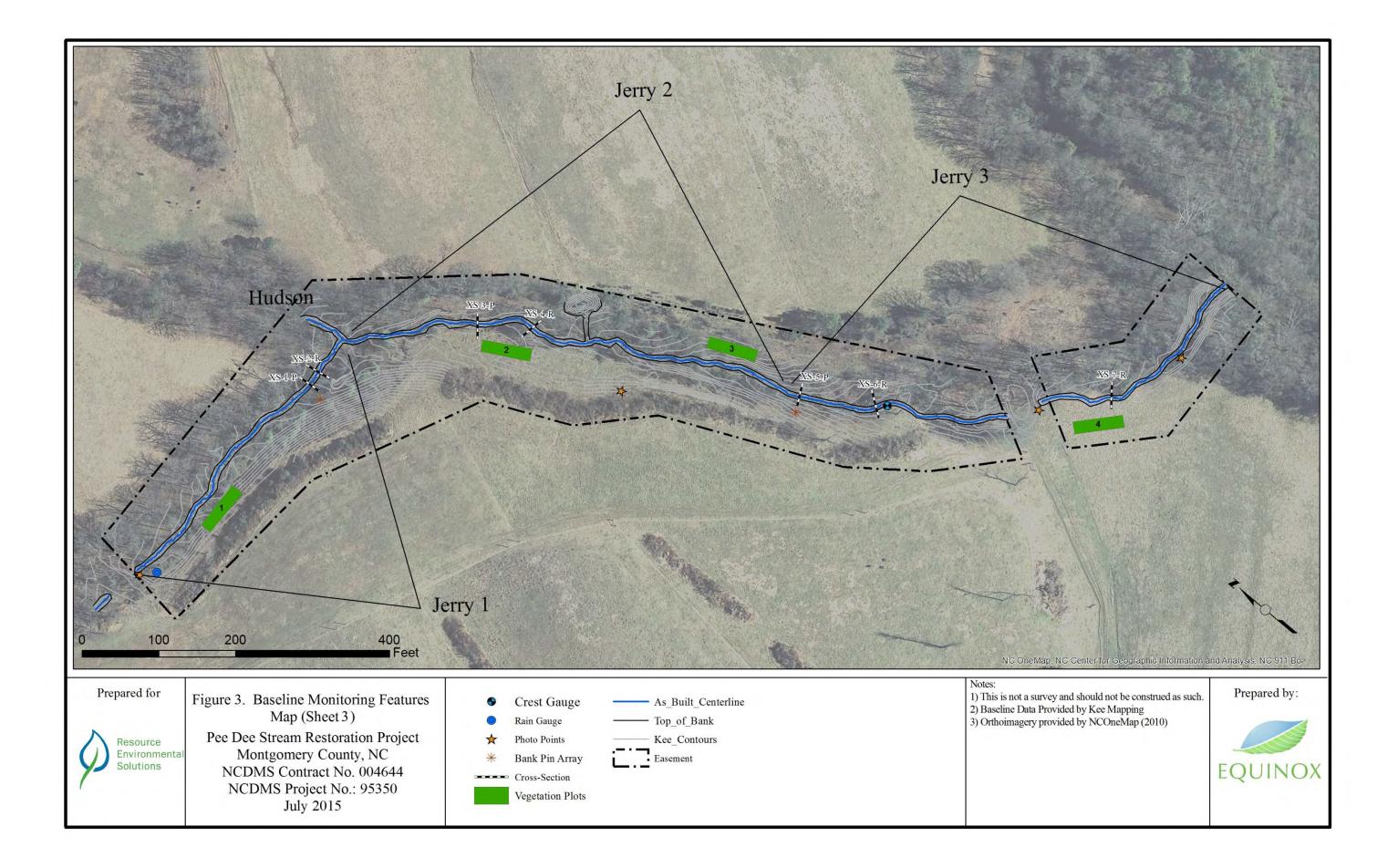
During construction, several deviations were made from the final plans and approved by the engineer. These included moving one crossing to the top of Jerry Branch 1, shifting the crossing at 228+50 downstream approximately 8 feet, omitting a log sill near 219+75 on Dale branch, and omitting a boulder arch at 228+11.9 and 234+43.0 on Dale Branch. Of note, due to an error during construction stakeout, Thompson Branch was constructed 0.5 feet lower in elevation than designed. However, the 0.5 foot deviation in elevation was maintained throughout the reach and the channel was otherwise constructed as designed. The error should not affect stream stability since the channel and its associated slopes were constructed as designed.


Vegetation data, summary tables, and plot photos are located in Appendix C. Results from the initial survey indicate that planted stem density ranged between 810 and 1,139 stems per acre with a mean density of 922 stems per acre across all plots for MY0. A total of nine species were documented across all plots with species diversity within the plots ranging between 2 and 8. At the time of vegetation data collection, herbaceous vegetation had begun to establish. Additionally, good recruitment from woody vegetation is expected due to the presence of mature trees within the easement.


5.0 <u>REFERENCES</u>


Lee, Michael T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation, Version 4.2 (http://cvs.bio.unc.edu/methods.htm)


Appendix A


General Tables and Figures

					Ta	ble 1. Pr	oject Compon	ents and Mitiga	tion Cre	Nitrogen Nitrogen Buffer Nitrogen Reformation - Gestoration - Approach Restoration - Approach Restoration - Restoration - (PI, PII etc.) Restoration Equivalent Restoration or Action - PI EI 2 PI R 13 PI EI 3 PI R 29 PI R 29 PI R 16 PI R 5 Image: State of the state						
					Pee I	Dee Strea		n Site / Project	Number	95350						
	1						Mitigat	ion Credits								
														Nitrogen	Ph	osphorous
	Str	ream		ŀ	Riparian Wetland	1		Non-riparian	Wetland		Bu	ffer	Nut	rient Offset	Nuti	ient Offset
Туре	R		RE	R		RE		R	R	Ъ						
Totals	6,504													-		-
							Project (Components								
Projec	t Componen Reach ID	t -or-		Stationing	/Location		Existing	g Footage/Acrea	ge			or Restor	- ation			Mitigation Ratio
The	ompson Creek	1		100+7 - 1	02 + 50			250		PI		El	[243		1.5
	npson Creek 1							1346		PI		R		134)	1
	Dale Branch 1							375		PI		El	[375		1.5
Da	le Branch 2 - :	5		203+95 -	234+86			2407		PI		R	storation - or- estoration quivalent EI 2 R 2 EI 2 R 2 EI 2 R	2993	3	1
	Jerry Branch			300+74 -	318+15			1832		PI		R		169	l	1
Н	ludson Branch			402+48 -	403+07			53		PI		R		59		1
			Strea	am		Riparian		at Summation	Jon-ripari	an Wetlan	d		Nutrient Offset Nutrient Offset Image: Second strain of four or Acreage orration or Acreage ivalent EI 243 R 1349 EI 243 R 1349 EI 2993 R 1691 R 59 Buffer 1 (square feet) 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Upla	nd	
Restora	ation Level					(acr								Restoration Foota; or Acreage ¹ 243 1349 375 2993 1691 59	(acr	
				,	Riverine		Non-Riverine			,				,		,
Restorat	tion		6,09	92	-		-			-			-		-	
Enhance	ement		-		-		-			-					-	
Enhance	ement I		61	8	-		-			-			-		-	
Enhance	ement II		-		-		-			-					-	
Creation	ı		-		-		-			-			-		-	
Preserva	ation				-		-			-					-	
High Qu Preserva			_		-		-			RE Image: Constraint of the sector of t		1		-		
							BMP	Elements								
Element	t ²	Stream Riparia Riparia Rel R 6,504 0 0 0 0 0 anponent -or- ch ID Stationing/Location 0 <	Function						Notes							
FB																
					Riparian Wetland R											
(1				1								

¹Restoration footage accounts for crossings and exclusions.

²BR = Bioretention Cell; SF = Sand Filter; SW = Stormwater Wetland; WDP = Wet Detention Pond; DDP = Dry Detention Pond; FS = Filter Strip; S = Grassed Swale; LS = Level Spreader; NI = Natural Infiltration Area; FB = Forested Buffer

Table 2. Project Activity and ReportinPee Dee Stream Restoration Site / Project	•	
Activity or Report	Data Collection Complete	Completion or Delivery
Mitigation Plan	Dec - 2013	Dec - 2013
Final Design - Construction Plans	N/A	Jan - 2014
Construction	N/A	April - 2015
Temporary S&E Mix Applied to Entire Project Area	N/A	April - 2015
Permanent Seed Mix Applied to Reach/Segments 1 & 2	N/A	April - 2015
Containerized and B&B Plantings for Reach/Segments 1 & 2	N/A	April - 2015
Baseline Monitoring Document (Year 0 Monitoring - Baseline)	April - 2015	July 2015
Year 1 Monitoring		
Year 2 Monitoring		
Year 3 Monitoring		
Year 4 Monitoring		
Year 5 Monitoring		

Tabl	e 3. Project Contacts
Pee Dee Stream Resto	ration Site – NCDMS Project # 95350
	Resource Environmental Solutions, LLC
Prime Contractor	302 Jefferson Street; Suite 110
T Thire Contractor	Raleigh, North Carolina 27605
	David Godley (919) 209-1053
	Wolf Creek Engineering
Designer	12-1/2 Wall St., Suite C
2003.01	Asheville, North Carolina 28801
	Grant Ginn (828) 449-1930 ext 102
	Northstate Environmental
Construction Contractor	2889 Lowery Street
	Winston Salem, North Carolina 27101
	Darrell Westmoreland (336) 725-2010
	Northstate Environmental
Seeding Contractor	2889 Lowery Street
	Winston Salem, North Carolina 27101
	Darrell Westmoreland (336) 725-2010
	Resource Environmental Solutions, LLC
Planting Contractor	302 Jefferson Street; Suite 110
	Raleigh, North Carolina 27605
	David Godley (919) 209-1053
	Kee Mapping and Surveying
As-built Surveys	PO Box 2566
	Asheville, North Carolina 28802
	Phillip B. Key (828) 575-9021 Green Resource
	5204 Highgreen Court
Seeding Mix Source	Colfax, NC 27235
	(336) 855-6363
	ArborGen Inc.
	2011 Broadbank Court
	Ridgeville, SC 29472
	(888) 888-7158
Bare Root Seedlings	North Carolina Forest Service
	762 Claridge Nursery Road
	Goldsboro, NC 27350
	(888) 628-7337
	Bear Duck Farms, LLC
	105 Dobbs Place
Live Stakes	Goldsboro, NC
	Equinox
Martine Darf (MA) 2017	37 Haywood St.
Nonitoring Performers (Y0)- 2015	Asheville, North Carolina 28802
	Hunter Terrell (828) 253-6856
Monitoring Performers (Y0)- 2015	37 Haywood St. Asheville, North Carolina 28802

· · · ·	Table 4. Project Bas	eline Information	and Attribu	ites		
	Proj	ect Information				
Project Nam	ie		Pee De	ee Stream Restoration		
County			Mo	ontgomery County		
Project Area (a	cres)			18.6		
Project Coordinates (latitud	5			.95" N, 80°01'47.83" W	7	
	Project Waters	hed Summary Inf	ormation			
Physiographic Pr	ovince			Piedmont		
River Basin				Yadkin		
JSGS Hydrologic Unit 8-digit	03040104	USGS Hydro	ologic Unit 14-E	Digit	0304010	04020020
DWQ Sub-bas	sin			03-07-10		
Project Drainage Ar	ea (acres)			286		
Project Drainage Area Percentag	ge of Impervious Area			<10%		
CGIA Land Use Clas	sification		2.01.03	Hay and Pasture Land		
	Reach S	ummary Informati	on			
Parameter		Thompson Creek	Dale Bran	ch Jerry Brai	nch	Hudson Branch
Length of reach (lir	ear feet)	1596	2782	1832		56
Valley classification		П	II	II		II
Drainage area (a		102	58	83		19
NCDWQ stream identif	· ·	30.5	34	30.5		21.5
NCDWQ Water Quality		C	C	C		C
Morphological Description (str		B4	B4	B4		B4
Evolutionary trend		IV	IV	IV		IV
Underlying mapp		GoE, BeC2, BaC2	GoE, CnA		BaB2	BaC2
Drainage cla		Well-drained	Well-draine			Well-drained
-		1 1	Non-Hydri			Non-Hydric
Soil Hydric sta	ii us	Non-Hydric			ic	2%
Slope		2%	2%	2%		
FEMA classific		N/A	N/A	N/A		N/A
Native vegetation co		Agricultural	Agricultura	÷	al	Agricultural
Percent composition of exotic	-	5%	5%	5%		5%
		Summary Informat	tion			
Parameter		-		-		-
Size of Wetland (acres)	-		-		
Wetland Type (non-riparian, riparian riv	erine or riparian non-riverine)	-		-		-
Mapped Soil S	eries	-		-		-
Drainage cla	55	-		-		-
Soil Hydric Sta	itus	-		-		-
Source of Hydro	ology	-		-		-
Hydrologic Impa	rment	-		-		-
Native vegetation co	ommunity	-		-		-
Percent composition of exotic	invasive vegetation	-		-		-
	Regulat	ory Conside ration	15			
Regulation	Ар	plicable?		Resolved?		upporting cumentation
Waters of the United States – Section 404		Yes		Yes		NWP
Waters of the United States – Section 401		Yes		Yes	401	Certification
Endangered Species Act		N/A				ERTR
Historic Preservation Act		N/A				ERTR
Coastal Zone Management Act (CZMA)/ Coastal Area Management Act (CAMA)		N/A				
FEMA Floodplain Compliance		N/A				
Essential Fisheries Habitat		N/A				ERTR

Appendix B Morphological Summary Data and Plots

			Deel	Dee									mmai	•	0.6.	<u>م</u>								
Parameter	Regi	onal C			/ Pro					- 1 no			r <mark>anch</mark> Reach		U IEE	Ĺ	Desigr	1		As-	Built	Base	line	
					L _							1	1	~ ~	1	1	I		1				~ ~	
Dimension & Substrate - Riffle	LL	UL	Eq.	Min	Mean	Med	Max	-				Med			N	Min	Mean	Max	Min	Mean	Med	Max	SD	N
Bankfull Width (ft)	-	-	4.6	-	5.0	-	-	-	1	9.8	11.7	-	13.1	-	-	-	8.8	-	-	-	-	-	-	-
Floodprone Width (ft)			0.7	-	20.0	-	-	-	1		18.0	-	21.0	-	-	-	-	-	-	-	-	-	-	-
Bankfull Mean Depth (ft)	-	-	0.7	-	1.0		-	-	1		0.6	-	0.8	-	-	-	0.48	-	-	-	-	-	-	-
Bankfull M ax Depth (ft)		1.0		-	1.3	-	-	-	1	0.8	0.9	-	1.2	-	-	-	0.73	-	-	-	-	-	-	-
Bankfull Cross Sectional Area (ft ²)		4.8		-	4.6	-	-	-	1	5.4	7.3	-	8.0	-	-	-	4.2	-	-	-	-	-	-	-
Width/Depth Ratio				-	5.5	-	-	-	1	12.3	18.8	-	19.6	-	-	-	18.6	-	-	-	-	-	-	-
Entrenchment Ratio				-	4.0	-	-	-	1	1.4	1.5	-	1.8	-	-	-	3.4	-	-	-	-	-	-	-
Bank Height Ratio				-	1.2	-	-	-	1	0.9	1.0	-	1.4	-	-	-	-	-	-	-	-	-	-	-
d50 (mm)				-	-	-	-	-	-	-	52	-	I	-	-	-	-	-	-	-	-	-	-	-
Profile								1		4.0	14.0		20.0	1	-	1			44.7	44.7	44.7	44.7		1
Riffle Length (ft)				-	-	-	-	-	-	4.0	14.0	-	30.0	-	-	-	-	-	44.7	44.7	44.7	44.7	-	1
Riffle Slope (ft/ft) Pool Length (ft)				-	-	-	-	-	-	0.017	0.027	-	0.059	-	-	-	-	-	0.006	0.006	0.006	0.006	- 11.6	1 6
5 ()				-	-	-	-	-	-		13.0	-		-		-	-	-	9.6					
Pool Max Depth (ft)				-	-	-	-	-	-	1.8	1.9	-	2.7	-	-	-	1.1	-	1.6	2.0	1.9	2.3	0.3	7
Pool Spacing (ft)				-	-	-	-	-	-	18.0	39.0	-	53.0	-	-	-	28.6	-	11.0	22.3	18.3	36.5	11.2	6
Pattern								1					-		1	1								_
Channel Belt Width (ft)				-	-	-	-	-	-	-	21.0	-	-	-	-	-	-	-	19.0	26.1	22.9	36.4	9.1	3
Radius of Curvature (ft)				-	-	-	-	-	-	-	18.0	-	-	-	-	13.0	-	19.0	12.3	13.1	13.2	13.7	0.7	3
Rc: Bankfull Width (ft)				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.4	1.5	1.5	1.6	0.1	1
Meander Wavelength (ft)				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	60.7	94.7		155.2	44.0	4
Meander Width Ratio				-	-	-	-	-	-	-	1.8	-	-	-	-	-	3	-	2.2	3.0	2.6	4.1	1.0	3
Substrate, Bed and Transport Parameters																								
Ri% / Ru% / P% / G% / S%						-							-							25%/	0%/69	9%/0%	6/6%	
SC% / Sa% / G% / C% / B% / Be%						-				40	% / 2%	/ 49%	/ 38% /	1%/6	5%									
d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)											14 / 36	/ 52/	110 / 1	70 / - /	-									
Reach Shear Stress (Competency) lb/ft ²						-						0.5	562				-					-		
Max Part Size (mm) Mobilized at Bankfull						-						9	47				37					-		
Stream Power (Transport Capacity) W/m ²						-							-				-							
Additional Reach Parameters																								
Drainage Area (mi ²)						0.11						0.	42											
Impervious Cover Estimate (%)						-							-											
Rosgen Classification						G						В	4c				B4				E	84		
Bankfull Velocity (fps)		-				-						3	.8				-							
Bankfull Discharge (cfs)		18.2				-						28	8.0				18							
Valley Length (ft)						-						26	0.0				294							
Channel Thalweg Length (ft)						-							-				511				5	30		
Sinuosity						-						1.	50				1.0				1.	06		
Water Surface Slope (ft/ft)						-							-				0.030				0.0)31		
Bankfull Slope (ft/ft)						-							-				-				0.0	030		
Bankfull Floodplain Area (acres)						-							-				-							
Proportion Over Wide (%)						-							-											
Entrenchment Class (ER Range)						-							-											
Incision Class (BHR Range)						-							-											
BEHI						30.9)						-											
Channel Stability or Habitat Metric						-							-											
Biological or Other						-							-											
- Information unavailable.				•																				

		т	000 1		ble 5 Proje										1 fac	(f)								
Parameter	Regi	onal C			re-Exis)		•		Reach		1 100	T	Desigi	n		As-l	Built /	Basel	ine	
Dimension & Substrate - Riffle	LL	тт	E~	Ma	Maan	Mad	Man	SD	Ν	Min	Mean	Med	Man	6 D	N	Min	Maan	Man	Min	Maan	Mad	Man	6 D	Ξ.
Bankfull Width (ft)	-	UL -	Eq. 5.11	Min 7.0	Mean 7.7	7.0	9.0	1.2		9.8	11.7	-	13.1	SD -	N -	-	Mean 7.5	Max -	Min 7.5	Mean 7.6	7.6	Max 7.6	SD 0.07	N 2
Floodprone Width (ft)	-	-	5.11	9.0	14.7	15.0	20.0	5.5	2	9.8	18.0	-	21.0	-	-	-	7.5	-	31.1	32.7	32.7	34.3	2.26	2
Bankfull Mean Depth (ft)			0.8	0.9	0.9	0.9	1.0	0.1	2	0.5	0.6	-	0.8	-	-	-	0.6	-	0.6	0.6	0.6	0.6	0	2
Bankfull Max Depth (ft)	-	-	0.8	1.1	1.1	1.1	1.0	0.1	3	0.5	0.0	-	1.2	-	-	-	0.78	-	1.1	1.2	1.2	1.2	0.07	2
Bankfull Cross Sectional Area (ft ²)		5.6		5.7	6.7	6.0	8.4	1.5	3	5.4	7.3	-	8.0	-	-	-	4.2	-	4.2	4.3	4.3	4.3	0.07	2
Width/Depth Ratio		5.0		8.1	8.8	8.5	9.7	0.8	3	12.3	18.8	-	19.6	-	-	-	13.5	-	13.3	13.4	13.4	13.4	0.07	2
Entrenchment Ratio				1.3	2.0	1.7	2.9	0.8	3	1.4	1.5	-	19.0	-	-	-	4.0	-	4.1	4.3	4.3	4.5	0.07	1
Bank Height Ratio				1.5	2.0	2.4	2.9	0.8	_	0.9	1.0	-	1.6	-	-	-	-	-	1.0	4.5	1.0	1.0	0.28	2
d50 (mm)				-	-	-	-	-	5	0.9	52	-	1.4	-	-	-	-	-	1.0	1.0	1.0	1.0	0.0	-
Profile					-		-	-	-		52	-		-	-	<u> </u>	-	-						_
Riffle Length (ft)					-	-	-	-	1_	4.0	14.0	-	30.0	-	-	-	-	-	10.0	15.8	15.2	25.4	3.9	3
Riffle Slope (ft/ft)				-	-	-	-	-	E	0.017	0.027	-	0.059	-	-	-	0.008	-	0.005	0.014	0.013	0.023	0.005	
Pool Length (ft)				-	-	-	-	-	E	7.0	13.0	-	30.0	-	-	-	-	-	1.8	5.0	4.6	18.3	3.0	3
Pool Max Depth (ft)				-	-	-	-	-	E	1.8	1.9	-	2.7	-	-	-	- 1.17	-	1.6	2.1	2.0	2.6	0.3	3
Pool Spacing (ft)				-	-	-	-	-	E	1.8	39.0	-	53.0	-	-	-	26.2	-	1.4	27.5	25.9	54.0	7.4	3
Pattern						<u> </u>	<u> </u>	<u> </u>	<u> </u>	10.0	57.0		55.0			<u> </u>	20.2		17.5	21.5	25.7	54.0	7.7	
Channel Belt Width (ft)			1	1	-	1	1	T		-	21.0			-		-	1	-	14.4	22.4	19.5	37.8	8.2	6
Radius of Curvature (ft)				-	-	-	-	-	-	-	18.0	-	-	-	-	12.0	-	18.0	14.4	18.3	19.5	25.9	6.7	4
Re: Bankfull Width (ft)				-	-	-	-	-	-	-	18.0	-	-	-	-	-	-	-	1.4	2.4	2.5	3.5	0.9	2
Meander Wavelength (ft)				-	-	-	-		-	-			-	-	-	-	-	-	34.3	48.7	50.5	60.9	9.8	6
Meander Wavelength (II) Meander Width Ratio				-	-	-	-		-	-	1.8	-	-	-	-	-	3	-	2.2	3.0	2.6	4.1	9.8	3
						<u> </u>	<u> </u>	L -			1.0					<u> </u>	5		2.2	3.0	2.0	4.1	1.0	
Substrate, Bed and Transport Parameters										-														
Ri% / Ru% / P% / G% / S%						-							-						5	7% / 09	% / 18%	6/11%	6 / 14%	ó
SC% / Sa% / G% / C% / B% / Be%				- - 4 / 6 / 8 / 15 /24										1%/6										
d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)				- 4 / 6 / 8 / 15 /24							14/36			70 / - / -	-									
Reach Shear Stress (Competency) lb/ft ²						-						0.5					-				-			
Max Part Size (mm) Mobilized at Bankfull						-						94					37				-			
Stream Power (Transport Capacity) W/m ²						-							-				-							
Additional Reach Parameters																								
Drainage Area (mi ²)						0.14						0.	42											
Impervious Cover Estimate (%)						-																		
Rosgen Classification						G						В	4c				B4				B4	1		
Bankfull Velocity (fps)		-				-						3					-							
Bankfull Discharge (cfs)		21.6				-						28					22							
Valley Length (ft)						-						26					1,010							
Channel Thalweg Length (ft)						-							-			<u> </u>	1,150				1,0			
Sinuosity						-						1.				<u> </u>	1.1				1.0			
Water Surface Slope (ft/ft)						-							-			<u> </u>	0.020				0.0			
Bankfull Slope (ft/ft)						-							-			<u> </u>	0.022				0.0	22		
Bankfull Floodplain Area (acres)													-				-							
Proportion Over Wide (%)						-							-											
Entrenchment Class (ER Range)						-							-											
Incision Class (BHR Range)						-							-											
BEHI						29.8							-											
Channel Stability or Habitat Metric						-							-											
Biological or Other						-																		

				Pee	Dee	/ Pro	ject l	No. 95	5350	- Dal	e Bra	nch 1	(250) feet)				-					
Parameter	Regi	onal C	2.63 4.8 7.1 8.0 8.5 2.0 3 7.0 15.0 18.0 20.0 7.0 2 0.49 0.4 0.5 0.5 0.6 0.1 3 0 2.5 2.9 2.9 3.4 0.5 3 1.5 2.0 2.1 2.5 9.2 3.4 0.5 3 1.15 2.0 2.1 2.5 9.2 3.4 0.5 3 1.10 1.8 1.2 3.1 1.2 3 1.2 3 1.10 1.8 1.2 3.1 1.2 3 1.2 3 1.10 1.8 1.2 3.1 1.2 3 1.2 3 1.10 1.8 1.2 3 1.2 3 1.2 3 1.10 1.8 1.2 3 1.2 3 1.2 3 1.11 1.8 1.2 3 1.2 3 1.2 3 1.11 1.11 1.12 1.1 1.1								Refe	rence	Reach	Data			Desig	n		As-	Built /	Basel	ine ¹	
Dimension & Substrate - Riffle	LL	UL	Eq.	Min	Mean	Med	Max	SD	Ν	Min	Mean	Med	Max	SD	Ν	Min	Mean	Max	Min	Mean	Med	Max	SD	N
Bankfull Width (ft)	-	-	2.63	4.8	7.1	8.0	8.5	2.0		9.8	11.7	-	13.1	-	-	-	6.3	-						
Floodprone Width (ft)				7.0	15.0	18.0	20.0	7.0	2	16.0	18.0	-	21	-	-	-	-	-						
Bankfull Mean Depth (ft)	-	-	0.49	0.4	0.5	0.5	0.6	0.1	3	0.5	0.62	-	0.8	-	-	-	0.34	-						
Bankfull Max Depth (ft)				0.5	0.6	0.6	0.7	0.1	3	0.8	0.9	-	1.2	-	-	-	0.52	-						
Bankfull Cross Sectional Area (ft ²)		2.0		2.5	2.9	2.9	3.4	0.5	3	5.4	7.3	-	8	-	-	-	2.1	-						
Width/Depth Ratio				8.0	18.4	21.4	25.7	9.2	3	12.3	18.8	-	19.6	-	-	-	18.7	-						
Entrenchment Ratio				1.5	2.0	2.1	2.5	0.5	3	1.4	1.5	-	1.8	-	-	-	5.6	-						
Bank Height Ratio				1.0	1.8	1.2	3.1	1.2	3	0.9	1	-	1.4	-	-	-	-	-						
d50 (mm)				-	-	-	-	-	-	-	52	-	-	-	-	-	-	-						
Profile																								
Riffle Length (ft)				-	-	-	-	-	-	4.0	14.0	-	30.0	-	-	-	-	-						
Riffle Slope (ft/ft)				-	-	-	-	-	-	0.017	0.027	-	0.059	-	-	-	-	-						
Pool Length (ft)				-	-	-	-	-	-	7.0	13.0	-	30.0	-	-	-	-	-						
Pool Max Depth (ft)				-	-	-	-	-	-	1.8	1.9	-	2.7	-	-	-	0.77	-						
Pool Spacing (ft)				-	-	-	-	-	-	18.0	39.0	-	53.0	-	-	-	20.5	-						
Pattern																								
Channel Belt Width (ft)				-	-	-	-	-	-	-	21.0	-	-	-	-	-	-							
Radius of Curvature (ft)				-	-	-	-	-	-	-	18.0	-	-	-	-	9.0	-	14.0						
Rc: Bankfull Width (ft)				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-						
Meander Wavelength (ft)				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-						
Meander Width Ratio				-	-	-	-	-	-	-	1.8	-	-	-	-	-	4	-						
Substrate, Bed and Transport Parameters										r														
Ri% / Ru% / P% / G% / S%													-						-					
SC% / Sa% / G% / C% / B% / Be%				· ·							% / 2%													
d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)											14 / 36			/0 / - /	-									
Reach Shear Stress (Competency) lb/ft ²													562				-							
Max Part Size (mm) Mobilized at Bankfull													47				32							
Stream Power (Transport Capacity) W/m ²							-						-				-							
Additional Reach Parameters				-						1						1			1					
Drainage Area (mi ²)													42											
Impervious Cover Estimate (%)													-											
Rosgen Classification							-						4c				B4							
Bankfull Velocity (fps)		-											.8				-							
Bankfull Discharge (cfs)		7.13		C									8.0				7							
Valley Length (ft)													0.0			L	-							
Channel Thalweg Length (ft)				-									-				375							
Sinuosity													50			L	1.20							
Water Surface Slope (ft/ft)				-									-				0.0390)						
Bankfull Slope (ft/ft)													-				-							
Bankfull Floodplain Area (acres)													-				-							
Proportion Over Wide (%)							-						-											
Entrenchment Class (ER Range)							-						-											
Incision Class (BHR Range)							-						-											
BEHI						25	.64						-											
Channel Stability or Habitat Metric							-						-											
Biological or Other							-						-											

¹This reach received minor bank work with no adjustments to profile. No cross-sections set in this reach.

Bankfull Width (ft) - Floodprone Width (ft) - Bankfull Mean Depth (ft) - Bankfull Max Depth (ft) - Bankfull Max Depth (ft) - Bankfull Cross Sectional Area (ft ²) 2. Width/Depth Ratio - Bank Height Ratio - Profile - Pool Length (ft) - Pool Length (ft) - Pool Max Depth (ft) - Pattern - Channel Belt Width (ft) - Re: Bankfull Width (ft) - Meander Wavelength (ft) - Meander Wavelength (ft) - Meander Wavelength (ft) - Meander Wavelength (ft) <th>ЛL Еq. - 2.98 - 0.54</th> <th>e M M M 8 · · · 4 · · · · · · · · · · · · ·</th> <th>Pr - 5 - 7 - 0 - 0 - 2 - 9 - 1 - 7 - - - - - - - - - - - - -</th> <th>re-E</th> <th>/ Proj - Version of the second secon</th> <th>g Con</th> <th></th> <th>N 1 1 1 1 1 - - - - - - - - - - - - - -</th> <th></th> <th></th> <th>rence</th> <th>Max 13.1 21 0.8 1.2 8 19.6 1.8 1.4 - 30.0</th> <th></th> <th>N - - - - - - - - - -</th> <th></th> <th>Design 5.4 - 0.37 0.56 2.0 14.6 8.2 - -</th> <th></th> <th>Min 6.4 15.1 0.3 0.5 1.8 22.6 2.4 1.0</th> <th>As- 6.7 19.5 0.3 0.6 1.9 23.6 2.9 1.0</th> <th>Med 6.7 19.5 0.3 0.6 1.9 23.6 2.9 1.0</th> <th></th> <th>SD 0.42 6.22 0 0.14 0.14 1.41 0.71 0.0</th> <th>N 2 2 2 2 2 2 2 2 2 2 2 2 2</th>	Л L Еq. - 2.98 - 0.54	e M M M 8 · · · 4 · · · · · · · · · · · · ·	Pr - 5 - 7 - 0 - 0 - 2 - 9 - 1 - 7 - - - - - - - - - - - - -	re-E	/ Proj - Version of the second secon	g Con		N 1 1 1 1 1 - - - - - - - - - - - - - -			rence	Max 13.1 21 0.8 1.2 8 19.6 1.8 1.4 - 30.0		N - - - - - - - - - -		Design 5.4 - 0.37 0.56 2.0 14.6 8.2 - -		Min 6.4 15.1 0.3 0.5 1.8 22.6 2.4 1.0	As- 6.7 19.5 0.3 0.6 1.9 23.6 2.9 1.0	Med 6.7 19.5 0.3 0.6 1.9 23.6 2.9 1.0		SD 0.42 6.22 0 0.14 0.14 1.41 0.71 0.0	N 2 2 2 2 2 2 2 2 2 2 2 2 2
Parameter Image: Substrate - Riffle LL U Dimension & Substrate - Riffle LL U Bankfull Width (ft) - - Floodprone Width (ft) - - Bankfull Max Depth (ft) - - Bankfull Max Depth (ft) - - Bankfull Max Depth (ft) - - Bankfull Cross Sectional Area (ft ²) 2. - Width/Depth Ratio - - Bank Height Ratio - - Gauss Sectional Area (ft ²) - - Profile - - - Riffle Length (ft) - - - Pool Length (ft) - - - Pool Max Depth (ft) - - - Pool Max Depth (ft) - - - Pool Max Depth (ft) - - - Pattern - - - - Channel Belt Width (ft) - - - Radius of Curvature (ft) - - - Meander Wavelength (ft	Л L Еq. - 2.98 - 0.54		lin Me - 5 - 7 - 0 - 0 - 2 - 9 - 1 - 7 - 7 	ean 6.0 7.0 0.6 0.7 2.8 0.0 .4 7.9 - - - - - - - -	Med 	Max - - - - - - - - - - - - - - - - - - -	SD - - - - - - - - - - - - - - - - -	1 1 1 1 1 1 1 - - -	9.8 16.0 0.5 0.8 5.4 12.3 1.4 0.9 - - 4.0 0.017	Mean 11.7 18.0 0.62 0.9 7.3 18.8 1.5 1 52 14.0	Med - - - - - - - - - - - - - -	Max 13.1 21 0.8 1.2 8 19.6 1.8 1.4 - 30.0	SD - - - - - - - - - - - -	- - - - - - - - -	Min - - - - - - - - - -	Mean 5.4 - 0.37 0.56 2.0 14.6 8.2 -	Max - - - - - - - - - -	6.4 15.1 0.3 0.5 1.8 22.6 2.4	Mean 6.7 19.5 0.3 0.6 1.9 23.6 2.9	Med 6.7 19.5 0.3 0.6 1.9 23.6 2.9	Max 7.0 23.9 0.3 0.7 2.0 24.6 3.4	SD 0.42 6.22 0 0.14 0.14 0.14 0.71	2 2 2 2 2 2 2 2 2 2
Bankfull Width (ft) - Floodprone Width (ft) - Bankfull Mean Depth (ft) - Bankfull Max Depth (ft) - Bankfull Max Depth (ft) - Bankfull Cross Sectional Area (ft ²) 2. Width/Depth Ratio - Bank Height Ratio - Pool Length (ft) - Pool Length (ft) - Pool Max Depth (ft) - Pool Spacing (ft) - Pattern - Channel Belt Width (ft) - Readen Wavelength (ft) - Meander Wavelength (ft) - Meander Wavelength (ft)	- 2.98		- 5 - 7 - 0 - 0 - 2 - 9 - 1 - 7 - 7 - 7 	5.0 7.0 0.6 0.7 2.8 0.0 .4 7.9 - - - - - - -		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	1 1 1 1 1 1 1 - - -	9.8 16.0 0.5 0.8 5.4 12.3 1.4 0.9 - - 4.0 0.017	11.7 18.0 0.62 0.9 7.3 18.8 1.5 1 52 14.0	- - - - - - - - - -	13.1 21 0.8 1.2 8 19.6 1.8 1.4 - 30.0	- - - - - - - - - -	- - - - - - - - -	- - - - -	5.4 - 0.37 0.56 2.0 14.6 8.2 -	- - - - - -	6.4 15.1 0.3 0.5 1.8 22.6 2.4	6.7 19.5 0.3 0.6 1.9 23.6 2.9	6.7 19.5 0.3 0.6 1.9 23.6 2.9	7.0 23.9 0.3 0.7 2.0 24.6 3.4	0.42 6.22 0 0.14 0.14 1.41 0.71	2 2 2 2 2 2 2 2 2 2
Bankfull Width (ft) - Floodprone Width (ft) - Bankfull Mean Depth (ft) - Bankfull Max Depth (ft) - Bankfull Max Depth (ft) - Bankfull Cross Sectional Area (ft ²) 2. Width/Depth Ratio - Bank Height Ratio - Pool Length (ft) - Pool Length (ft) - Pool Max Depth (ft) - Pool Spacing (ft) - Pattern - Channel Belt Width (ft) - Readen Wavelength (ft) - Meander Wavelength (ft) - Meander Wavelength (ft)	- 2.98		- 5 - 7 - 0 - 0 - 2 - 9 - 1 - 7 - 7 - 7 	5.0 7.0 0.6 0.7 2.8 0.0 .4 7.9 - - - - - - -		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	1 1 1 1 1 1 1 - - -	9.8 16.0 0.5 0.8 5.4 12.3 1.4 0.9 - - 4.0 0.017	11.7 18.0 0.62 0.9 7.3 18.8 1.5 1 52 14.0	- - - - - - - - - -	13.1 21 0.8 1.2 8 19.6 1.8 1.4 - 30.0	- - - - - - - - - -	- - - - - - - - -	- - - - -	5.4 - 0.37 0.56 2.0 14.6 8.2 -	- - - - - -	6.4 15.1 0.3 0.5 1.8 22.6 2.4	19.5 0.3 0.6 1.9 23.6 2.9	6.7 19.5 0.3 0.6 1.9 23.6 2.9	7.0 23.9 0.3 0.7 2.0 24.6 3.4	0.42 6.22 0 0.14 0.14 1.41 0.71	2 2 2 2 2 2 2 2 2 2
Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft) Bankfull Cross Sectional Area (ft²) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio Pool Length (ft) Pool Length (ft) Pool Spacing (ft) Pattern Channel Belt Width (ft) Reader Wavelength (ft) Reader Wavelength (ft) Meander Wavelength (ft) Meander Width Ratio Substrate, Bed and Transport Parameters Ri% / Ru% / P% / G% / S% SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^P / di ^P (mm) Reach Shear Stress (Co			- 0 - 0 - 2 - 9 - 1 - 7 - - - - - - - - - - - - -	0.6 0.7 2.8 0.0 4 7.9 - - - - - - -		- - - - - - - - - - - - - - -	- - - - - - - - - - - - -	1 1 1 1 1 - - - -	16.0 0.5 0.8 5.4 12.3 1.4 0.9 - 4.0 0.017	0.62 0.9 7.3 18.8 1.5 1 52 14.0	- - - - - -	21 0.8 1.2 8 19.6 1.8 1.4 - 30.0			- - - -	- 0.37 0.56 2.0 14.6 8.2 -	-	15.1 0.3 0.5 1.8 22.6 2.4	19.5 0.3 0.6 1.9 23.6 2.9	19.5 0.3 0.6 1.9 23.6 2.9	23.9 0.3 0.7 2.0 24.6 3.4	6.22 0 0.14 0.14 1.41 0.71	2 2 2 2 2 2 2 2 2
Bankfull Mean Depth (ft) - - Bankfull Cross Sectional Area (ft ²) 2. Width/Depth Ratio - Bankfull Cross Sectional Area (ft ²) 2. Width/Depth Ratio - Bank Height Ratio - Bankfull Mean Depth (ft) - Pool Length (ft) - Pool Max Depth (ft) - Pool Spacing (ft) - Pattern - Channel Belt Width (ft) - Reader Wavelength (ft) - Meander Wavelength (ft) - Meander Wavelength (ft) - Meander Wavelength (ft) - Substrate, Bed and Transport Parameters - Ri% / Ru% / P% / G% / S% - SC% / Sa% / G% / C% / B% / B% - d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm) - <			- 0 - 2 - 9 - 1 - 7 - - - - - - - - - - - - -	0.7 2.8 0.0 4 7.9 - - - - - -	- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - -	- - - - - - - - - - - -	1 1 1 - -	0.8 5.4 12.3 1.4 0.9 - 4.0 0.017	0.9 7.3 18.8 1.5 1 52 14.0	- - - - -	1.2 8 19.6 1.8 1.4 - 30.0			- - - -	0.56 2.0 14.6 8.2 -	-	0.5 1.8 22.6 2.4	0.6 1.9 23.6 2.9	0.6 1.9 23.6 2.9	0.7 2.0 24.6 3.4	0.14 0.14 1.41 0.71	2 2 2 2 2 2
Bankfull Max Depth (ft) Bankfull Cross Sectional Area (ft²) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio d50 (mm) Profile Riffle Length (ft) Riffle Length (ft) Pool Length (ft) Pool Length (ft) Pool Spacing (ft) Pattern Channel Belt Width (ft) Re: Bankfull Width (ft) Meander Wavelength (ft) Meander Wavelength (ft) Meander Width Ratio Substrate, Bed and Transport Parameters Ri% / Ru% / P% / G% / S% SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^P / di [®] (mm) Reach Shear Stress (Competency) Ib/ft² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m² Additional Reach Parameters Drainage Area (m²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)			- 2 - 9 - 1 - 7 - - - -	2.8 0.0 4 7.9 	- - - - - - - - - - - -	- - - - - - - - - - - - - -	- - - - - -	1 1 1 - - -	5.4 12.3 1.4 0.9 - 4.0 0.017	7.3 18.8 1.5 1 52 14.0		8 19.6 1.8 1.4 - 30.0	-		- - -	2.0 14.6 8.2 -	-	1.8 22.6 2.4	1.9 23.6 2.9	1.9 23.6 2.9	2.0 24.6 3.4	0.14 1.41 0.71	2 2 2
Banktur From Versional France Width/Depth Ratio Entrenchment Ratio Bank Height Ratio d50 (mm) Profile Riffle Length (ft) Pool Length (ft) Pool Length (ft) Pool Spacing (ft) Pattern Channel Belt Width (ft) Rc: Bankfull Width (ft) Meander Wavelength (ft) Meander Wavelength (ft) Meander Wavelength (ft) Meander Width Ratio Substrate, Bed and Transport Parameters Ri ¹⁰ / Ru% / P% / G% / S% SC% / Sa% / O% / O% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ¹⁹ / di ¹⁹ (mm) Reach Shear Stress (Competency) Ib/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)			- 99 - 1 - 7 - - - - - - - -	0.0 .4 .7.9 - - - - -	- - - - - - - - - - -	- - - - - - - - - - -	- - - - -	1 1 - - -	12.3 1.4 0.9 - 4.0 0.017	18.8 1.5 1 52 14.0	-	19.6 1.8 1.4 - 30.0	-		-	14.6 8.2 -	-	22.6 2.4	23.6 2.9	23.6 2.9	24.6 3.4	1.41 0.71	2 2 2
Width/Depth Ratio Entrenchment Ratio Bank Height Ratio d50 (mm) Profile Riffle Length (ft) Riffle Klope (ft/ft) Pool Length (ft) Pool Max Depth (ft) Pool Spacing (ft) Pattern Channel Belt Width (ft) Rc: Bankfull Width (ft) Meander Wavelength (ft) Meander Wavelength (ft) Substrate, Bed and Transport Parameters Ri% / Ru% / P% / G% / S% SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^p / di ^{ip} (mm) Reach Shear Stress (Competency) Ib/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)			- 1 - 7 	- - - - -	- - - - - - - -		- - - - -	1 - - -	1.4 0.9 - 4.0 0.017	1.5 1 52 14.0		1.8 1.4 - 30.0	-	-	-	8.2	-	2.4	2.9	2.9	3.4	0.71	2
Bank Height Ratio d50 (mm) Profile Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Max Depth (ft) Pool Spacing (ft) Pattern Channel Belt Width (ft) Radius of Curvature (ft) Rc: Bankfull Width (ft) Meander Wavelength (ft) Meander Width Ratio Substrate, Bed and Transport Parameters Ri% / Ru% / P% / G% / S% SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^p / di ^p (mm) Reach Shear Stress (Competency) Ib/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)			- 7 	7.9 - - - -	- - - - - -		- - - -	1 - - -	0.9 - 4.0 0.017	1 52 14.0	-	1.4 - 30.0	-	-	-	-	-						
d50 (mm) Profile Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Max Depth (ft) Pool Spacing (ft) Pattern Channel Belt Width (ft) Radius of Curvature (ft) Rc: Bankfull Width (ft) Meander Wavelength (ft) Meander Width Ratio Substrate, Bed and Transport Parameters Ri% / Ru% / P% / G% / S% SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^p / di ^p (mm) Reach Shear Stress (Competency) Ib/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)			- · · · · · · · · · · · · · · · · · · ·	- - - - -	- - - - -	-	-	-	- 4.0 0.017	52 14.0	-	- 30.0	-	-				1.0	1.0	1.0	1.0	0.0	2
Profile Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Max Depth (ft) Pool Spacing (ft) Pattern Channel Belt Width (ft) Radius of Curvature (ft) Rc: Bankfull Width (ft) Reader Wavelength (ft) Meander Wavelength (ft) Meander Wavelength (ft) Meander Width Ratio Substrate, Bed and Transport Parameters Ri% / Ru% / P% / G% / S% SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm) Reach Shear Stress (Competency) Ib/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)				- - - -	- - - -		-	-	4.0 0.017	14.0	-	30.0			-	-	-						
Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Max Depth (ft) Pool Spacing (ft) Pattern Channel Belt Width (ft) Radius of Curvature (ft) Re: Bankfull Width (ft) Meander Wavelength (ft) Meander Wavelength (ft) Meander Wavelength (ft) Substrate, Bed and Transport Parameters Ri% / Ru% / P% / G% / S% SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm) Reach Shear Stress (Competency) Ib/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)			- , , , , , , , , , , , , , , , , , , ,	-		-	-	-	0.017				-	_									1
Riffle Slope (ft/ft) Pool Length (ft) Pool Max Depth (ft) Pool Spacing (ft) Pattern Channel Belt Width (ft) Radius of Curvature (ft) Re: Bankfull Width (ft) Meander Wavelength (ft) Meander Wavelength (ft) Meander Wavelength (ft) Substrate, Bed and Transport Parameters Ri% / Ru% / P% / G% / S% SC% / Sa% / G% / C% / B% / B% d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm) Reach Shear Stress (Competency) Ib/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)			- , , , , , , , , , , , , , , , , , , ,	-		-	-	-	0.017				-		1								
Pool Length (ft) Pool Max Depth (ft) Pool Spacing (ft) Pattern Channel Belt Width (ft) Radius of Curvature (ft) Re: Bankfull Width (ft) Meander Wavelength (ft) Meander Wavelength (ft) Meander Wavelength (ft) Substrate, Bed and Transport Parameters Ri% / Ru% / P% / G% / S% SC% / Sa% / G% / C% / B% / B% d16 / d35 / d50 / d84 / d95 / di ^B / di ^B (mm) Reach Shear Stress (Competency) Ib/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)			- · · · · · · · · · · · · · · · · · · ·	-		-	-	-		0.027					- 1	-	-	3.2	10.1	9.0	21.3	4.8	28
Pool Length (ft) Pool Max Depth (ft) Pool Spacing (ft) Pattern Channel Belt Width (ft) Radius of Curvature (ft) Re: Bankfull Width (ft) Meander Wavelength (ft) Meander Wavelength (ft) Meander Wavelength (ft) Substrate, Bed and Transport Parameters Ri% / Ru% / P% / G% / S% SC% / Sa% / G% / C% / B% / B% d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm) Reach Shear Stress (Competency) Ib/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)			- · · ·	-	-	-			7.0		-	0.059	-	-	-	0.003	-	0.007	0.027	0.027	0.046	0.011	28
Pool Spacing (ft) Pattern Channel Belt Width (ft) Radius of Curvature (ft) Rc: Bankfull Width (ft) Meander Wavelength (ft) Meander Width Ratio Substrate, Bed and Transport Parameters Ri% / Ru% / P% / G% / S% SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^P / di ^P (mm) Reach Shear Stress (Competency) Ib/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)			-	-	-		-	~	7.0	13.0	-	30.0	-	-	-	-	-	1.5	3.2	2.9	9.6	1.6	29
Pattern Channel Belt Width (ft) Radius of Curvature (ft) Re: Bankfull Width (ft) Re: Bankfull Width (ft) Meander Wavelength (ft) Meander Width Ratio Meander Width Ratio Substrate, Bed and Transport Parameters Ri% / Ru% / P% / G% / S% SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^P / di ^P (mm) Reach Shear Stress (Competency) Ib/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)			-	-		-		-	1.8	1.9	-	2.7	-	-	-	0.84	-	1.1	1.6	1.4	2.8	0.5	28
Channel Belt Width (ft) Radius of Curvature (ft) Rc: Bankfull Width (ft) Meander Wavelength (ft) Meander Width Ratio Substrate, Bed and Transport Parameters Ri% / Ru% / P% / G% / S% SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^P / di ^P (mm) Reach Shear Stress (Competency) Ib/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)							-	-	18.0	39.0	-	53.0	-	-	-	20.7	1	9.4	19.7	19.3	31.4	4.9	28
Radius of Curvature (ft) Rc: Bankfull Width (ft) Meander Wavelength (ft) Meander Width Ratio Substrate, Bed and Transport Parameters Ri% / Ru% / P% / G% / S% SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^p / di ^p (mm) Reach Shear Stress (Competency) Ib/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)																							
Rc: Bankfull Width (ft) Meander Wavelength (ft) Meander Width Ratio Substrate, Bed and Transport Parameters Ri% / Ru% / P% / G% / S% SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^p / di ^p (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)				-	-	-	-	-	-	21.0	-	-	-	-	-	-	-	18.0	20.6	19.0	24.4	3.1	5
Meander Wavelength (ft) Meander Width Ratio Substrate, Bed and Transport Parameters Ri% / Ru% / P% / G% / S% SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)		_			-	-	-	-	-	18.0	-	-	-	-	10.0	-	15.0	8.2	13.8	14.7	16.7	3.4	5
Meander Width Ratio Substrate, Bed and Transport Parameters Ri% / Ru% / P% / G% / S% SC% / Sa% / G% / C% / B% / B% d16 / d35 / d50 / d84 / d95 / di ^p / di ^p (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)				-	-	-	-	-	-		-	-	-	-	-	-	I	1.2	2.1	2.2	2.5	0.5	5
Substrate, Bed and Transport Parameters Ri% / Ru% / P% / G% / S% SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^p / di ^p (mm) Reach Shear Stress (Competency) Ib/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)			-	-	-	-	-	-	-		-	-	-	-	-	-	I	33.1	38.9	39.6	41.5	3.1	6
Ri% / Ru% / P% / G% / S% SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^p / di ^p (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)			-	-	-	-	-	-	-	1.8	-	-	-	-	-	4	-	2.7	3.1	2.8	3.6	0.9	6
Ri% / Ru% / P% / G% / S% SC% / Sa% / G% / C% / B% / Be% d16 / d35 / d50 / d84 / d95 / di ^p / di ^p (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)																							
SC% / Sa% / G% / C% / B% / Bc% d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)									1			-							50%/	7%/ 169	// 10%	/ 17%	
d16 / d35 / d50 / d84 / d95 / di ^p / di ^{ip} (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)									40	6/2%		/ 38% /	1%/6	%					2070	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0, 10,	<i>s,</i> 1770	_
Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)												110/17											
Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)					-							562				-							
Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)					-							47				32				-			
Additional Reach Parameters Drainage Area (mi²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)					-							-				-							
Drainage Area (mi²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)																							
Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps) -					0.0)4					0.	42											
Rosgen Classification Bankfull Velocity (fps)					-							-											
Bankfull Velocity (fps) -					G	í					В	4c				B4				В	4		
	-				-						3	.8				-							
Bankfull Discharge (cfs) 8.7	77				-						28	3.0				9							
Valley Length (ft)					-						26					896							
Channel Thalweg Length (ft)					-							-				975				92	20		
Sinuosity					-				1		1.	50			1	1.00				1.0			
Water Surface Slope (ft/ft)					-							-				0.0420				0.0	29		
Bankfull Slope (ft/ft)					-							-				-				0.0	28		
Bankfull Floodplain Area (acres)					-							-				-							
Proportion Over Wide (%)					-							-											
Entrenchment Class (ER Range)					-							-											
Incision Class (BHR Range)					-							-											
BEHI					25	.2						-											
Channel Stability or Habitat Metric					-				1			-											
Biological or Other				_	-							-											

¹Based on average design values for Subreaches 2b-2e - Information unavailable. N/A - Item does not apply. Non-Applicable.

					Table	e 5 co	nt'd.	Bas	eline	Strea	ım Da	ita Su	mma	rv										
										- Dal)									
Parameter	Regi	ional C	Curve			Existin							Reach				Desigi	1		As-	Built /	Base	line	
Dimension & Substrate - Riffle	LL	UL	Eq.	Min	Mean	Med	Max	SD	Ν	Min	Mean	Med	Max	SD	Ν	Min	Mean	Max	Min	Mean	Med	Max	SD	Ν
Bankfull Width (ft)	-	-	3.28	3.0	3.3	3.3	3.6	0.4	2	9.8	11.7	-	13.1	-	-	-	7.2	-	7.3	7.3	7.3	7.3	-	1
Floodprone Width (ft)				9.0	12.0	12.0	15.0	4.2	2	16.0	18.0	-	21	-	-	-	-	-	18.5	18.5	18.5	18.5	-	1
Bankfull Mean Depth (ft)	-	-	0.58	0.6	0.7	0.7	0.7	0.1	2	0.5	0.62	-	0.8	-	-	-	0.39	-	0.3	0.3	0.3	0.3	-	1
Bankfull Max Depth (ft)				0.7	0.8	0.8	0.9	0.1	2	0.8	0.9	-	1.2	-	-	-	0.59	-	0.7	0.7	0.7	0.7	-	1
Bankfull Cross Sectional Area (ft ²)		2.8		3.0	3.6	3.6	4.1	0.8	2	5.4	7.3	-	8	-	-	-	2.8	-	2.5	2.5	2.5	2.5	-	1
Width/Depth Ratio				8.8	10.4	10.4	11.9	2.2	2	12.3	18.8	-	19.6	-	-	-	18.7	-	21.1	21.1	21.1	21.1	-	1
Entrenchment Ratio				1.5	2.0	2.0	2.5	0.7	2	1.4	1.5	-	1.8	-	-	-	4.2	-	2.5	2.5	2.5	2.5	-	1
Bank Height Ratio			1	1.6	1.9	1.9	2.2	0.4	2	0.9	1	-	1.4	-	-	-	-	-	1.0	1.0	1.0	1.0	-	1
d50 (mm)				-	-	-	-	-	-	-	52	-		-	-	-	-	-						-
Profile											<u> </u>													
Riffle Length (ft)				-	-	-	-	-	-	4.0	14.0	-	30.0	-	-	-	-	-	0.5	12.6	10.7	60.6	10.9	24
Riffle Slope (ft/ft)				-	-	-	-	-	-	0.017	0.027	-	0.059	-	-	-	0.008	-	0.005	0.026	0.025	0.061	0.014	24
Pool Length (ft)				-	-	-	-	-	-	7.0	13.0	-	30.0	-	-	-	-	-	1.3	3.3	2.9	9.0	1.5	23
Pool Max Depth (ft)			1	-	_	-	-	-	_	1.8	1.9	-	2.7	-	-	-	0.89	-	0.8	1.3	1.3	1.7	0.2	23
Pool Spacing (ft)				-	-	-	-	-	-	18.0	39.0	-	53.0	-	-	-	21.9	-	13.3	21.0	18.5	63.1	10.1	23
Pattern				_			-	_	_	10.0	37.0	-	55.0		_		21.7	_	15.5	21.0	10.5	05.1	10.1	25
Channel Belt Width (ft)				-			-	-	-	-	21.0	-	-	-	-		-	-	17.8	26.7	27.9	33.4	7.4	4
Radius of Curvature (ft)	_			-	-	-	-	-	-	-	18.0	-	-	-	-	11.0	-	16.0	8.7	10.2	9.8	12.1	1.4	6
Re: Bankfull Width (ft)				÷.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8.7	1.4	9.8	12.1	0.2	0
				÷.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	29.6	1.4 39.9	37.4			
Meander Wavelength (ft) Meander Width Ratio					-	-	-	-	-	-	1.8	-	-	-	-	-	2	-	29.6	39.9	37.4	55.7 4.6	10.0	6
					-	-	-	-	-	-	1.0	-	-	-	-	-	2	-	2.4	3.7	3.8	4.0	1.0	4
Substrate, Bed and Transport Parameters																								
Ri% / Ru% / P% / G% / S%							-						-						6	52% / 0	0% / 16	% /119	% /11%	ó
SC% / Sa% / G% / C% / B% / Be%							-			49	% / 2%	/ 49%	/ 38% /	/ 1% / 6	%									
d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)											14/36	/ 52 /	110 / 1	70 / - /	-									
Reach Shear Stress (Competency) lb/ft ²												0.5	562				-							
Max Part Size (mm) Mobilized at Bankfull							-					9	47				32							
Stream Power (Transport Capacity) W/m ²							-						-				-							
Additional Reach Parameters																								
Drainage Area (mi ²)						0.	05					0.	42											
Impervious Cover Estimate (%)							-						-											
Rosgen Classification	_					(3					В	4c				B4				В	4		
Bankfull Velocity (fps)		-					-			1		3	.8				-							
Bankfull Discharge (cfs)		10.3					-						8.0				10							
Valley Length (ft)							-					26	0.0				531							
Channel Thalweg Length (ft)							-			1			-				550				55	59		
Sinuosity							-			1		1	50				1.0				1.0			
Water Surface Slope (ft/ft)							-			1			-				0.027				0.0			
Bankfull Slope (ft/ft)		_	_				-						-				-				0.0			
Bankfull Floodplain Area (acres)							-						-				-							
Proportion Over Wide (%)	-			<u> </u>			-			1			-											_
Entrenchment Class (ER Range)							-			1			-											
Incision Class (BHR Range)				-			-			1			-											
BEHI						20				1			_											
Channel Stability or Habitat Metric							-			1			-											_
Biological or Other							-			1			_											_
- Information unavailable.										I														

- Information unavailable Non-Applicable.

					Table	5 co	nt'd.	Base	eline	Strea	m Da	ita Su	mma	ry										
				Pee	Dee	/ Pro	ject l	No. 95	5350	- Dale	e Bra	nch 4	(835	feet)									
Parameter	Regi	onal (Curve		Pre-H	xistin	g Con	dition			Refe	rence	Reach	Data			Desigi	n		As-	Built /	Basel	ine	
Dimension & Substrate - Riffle	LL	UL	Eq.	Min	Mean	Med	Max	SD	Ν	Min	Mean	Med	Max	SD	Ν	Min	Mean	Max	Min	Mean	Med	Max	SD	N
Bankfull Width (ft)	-	-	4.01	5.5	6.0	6.0	6.5	0.7	2	9.8	11.7	-	13.1	-	-	-	6.1	-	6.3	6.4	6.4	6.5	0.14	2
Floodprone Width (ft)				6.5	7.8	7.8	9.0	1.8	2	16.0	18.0	-	21	-	-	-	-	-	22.0	33.1	33.1	44.2	15.7	2
Bankfull Mean Depth (ft)	-	-	0.67	0.8	0.8	0.8	0.8	0.0	2	0.5	0.62	-	0.8	-	-	-	0.47	-	0.3	0.4	0.4	0.5	0.14	2
Bankfull Max Depth (ft)				1.0	1.0	1.0	1.0	0.0	2	0.8	0.9	-	1.2	-	-	-	0.67	-	0.7	0.8	0.8	0.9	0.14	2
Bankfull Cross Sectional Area (ft ²)		3.9		4.1	4.6	4.6	5.0	0.6	2	5.4	7.3	-	8	-	-	-	2.9	-	1.9	2.5	2.5	3.1	0.85	2
Width/Depth Ratio				7.3	7.9	7.9	8.4	0.8	2	12.3	18.8	-	19.6	-	-	-	13.0	-	13.8	17.4	17.4	21.0	5.09	2
Entrenchment Ratio				1.2	1.3	1.3	1.4	0.1	2	1.4	1.5	-	1.8	-	-	-	4.1	-	3.5	5.2	5.2	6.8	2.33	2
Bank Height Ratio				3.3	3.5	3.5	3.7	0.3	2	0.9	1	-	1.4	-	-	-	-	-	1.0	1.0	1.0	1.0	0.0	2
d50 (mm)				-	-	-	-	-	-	-	52	-	-	-	-	-	-	-						
Profile																								
Riffle Length (ft)				-	-	-	-	-	-	4.0	14.0	-	30.0	-	-	-	-	-	7.8	17.8	14.5	68.7	12.3	31
Riffle Slope (ft/ft)				-	-	-	-	-	-	0.017	0.027	-	0.059	-	-	-	0.002	-	0.003	0.018	0.016	0.048	0.009	31
Pool Length (ft)				-	-	-	-	-	-	7.0	13.0	-	30.0	-	-	-	-	-	1.5	3.2	2.9	12.5	2.1	30
Pool Max Depth (ft)				-	-	-	-	-	-	1.8	1.9	-	2.7	-	-	-	1.01	-	0.1	1.4	1.4	2.1	0.3	33
Pool Spacing (ft)				-	-	-	-	-	-	18.0	39.0	-	53.0	-	-	-	19.6	-	14.4	26.0	22.2	77.4	13.7	31
Pattern																								
Channel Belt Width (ft)				-	-	-	-	-	-	-	21.0	-	-	-	-	-	-	-	16.7	18.7	18.0	22.2	2.5	4
Radius of Curvature (ft)				-	-	-	-	-	-	-	18.0	-	-	-	-	9.0	-	14.0	9.3	13.1	13.6	16.4	2.9	6
Rc: Bankfull Width (ft)					-	-	-	-	-	-		-	-	-	-	-	-	-	1.4	2.1	2.1	2.6	0.5	2
Meander Wavelength (ft)					-	-	-	-	-	-		-	-	-	-	-	-	-	34.4	45.9	39.9	62.7	12.5	6
Meander Width Ratio					-	-	-	-	-	-	1.8	-	-	-	-	-	2	-	2.6	2.9	2.8	3.5	0.4	4
	·																							
Substrate, Bed and Transport Parameters																			r –	60011				
Ri% / Ru% / P% / G% / S%							-						-							68%/	0%/12	.%/ 8%	/11%	
SC% / Sa% / G% / C% / B% / Be%							-				% / 2%													
d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)							/11/15				14/36			/0 / - /	-									
Reach Shear Stress (Competency) lb/ft ²							-						562				-							
Max Part Size (mm) Mobilized at Bankfull							-						47				32							
Stream Power (Transport Capacity) W/m ²							-						-				-							
Additional Reach Parameters																								
Drainage Area (mi ²)							08						42											
Impervious Cover Estimate (%)							-						-											
Rosgen Classification						(3						4c				B4				В	4		
Bankfull Velocity (fps)		-					-						.8				-							
Bankfull Discharge (cfs)		14.45											3.0				14							
Valley Length (ft)							-					26	0.0				810							
Channel Thalweg Length (ft)													-				825				83			
Sinuosity												1.	50				1.00				1.			
Water Surface Slope (ft/ft)													-				0.028				0.0			
Bankfull Slope (ft/ft)													-				-				0.0	20		
Bankfull Floodplain Area (acres)													-				-							
Proportion Over Wide (%)							-						-											
Entrenchment Class (ER Range)							-						-											
Incision Class (BHR Range)							-						-											
BEHI						24	.25						-											
Channel Stability or Habitat Metric							-						-											
Biological or Other							-						-											
- Information unavailable.																								

				Table									•										
	1			Dee										feet	ć –			1					
Parameter	Re	gional		Pre-Exi	sting	Condi	tion			Refere	nce Re	each D	ata			Design	1	ļ	As-	Built	Base	line	
Dimension & Substrate - Riffle	LL	UL E	. Min	Mean	Med	Max	SD	Ν	Min	Mean	Med	Max	SD	N	Min	Mean	Max	Min	Mean	Med	Max	SD	N
Bankfull Width (ft)	-	- 4.	•	8.0	-	-	50	1	9.8	11.7	-	13.1	50	-	-	6.4	-	7.1	7.1	7.1	7.1		1
Floodprone Width (ft)			-	9.0	-	-	-	1	16.0	18.0	-	21	-	-	-	-	-	23.9	23.9	23.9	23.9	-	
Bankfull Mean Depth (ft)	-	- 0.	7 -	0.8	-	-	-	1	0.5	0.62	-	0.8	-	-	-	0.49	-	0.5	0.5	0.5	0.5	-	
Bankfull Max Depth (ft)		0.	-	1.0	-	-	-	1	0.8	0.02	-	1.2	-	-	-	0.69	-	0.7	0.7	0.7	0.7	-	1
Bankfull Cross Sectional Area (ft ²)		4.2	-	5.0	-	-	-	1	5.4	7.3	-	8		-	-	3.1	-	3.3	3.3	3.3	3.3	-	1
Width/Depth Ratio		7.2	-	12.9	-	-	-	1	12.3	18.8	-	0 19.6	-	-	-	13.1	-	15.2	15.2	15.2	15.2	-	
Entrenchment Ratio				12.9	-		-	1	12.5	1.5	-	19.0	-	-	-	3.1	-	3.4	3.4	3.4	3.4		1
Bank Height Ratio			<u> </u>	2.6	-	-	-	1	0.9	1.5	-	1.6	-	-	-	-	-	1.0	1.0	1.0	1.0	-	
d50 (mm)				-	-			1	-	52	-	-	-	-	-	-	-	1.0	1.0	1.0	1.0	-	-
Profile			-	-	-	-	-	-	-	32	-	-	-	-	-	-	-						
Riffle Length (ft)			1.1		-	-			4.0	14.0	-	30.0				-	-	7.2	18.3	20.3	25.1	6.0	1
Riffle Slope (ft/ft)			-	-	-	-	-	-	0.017	0.027	-	0.059	-	-	-	0.002	-	0.005	0.022	0.024	0.044	0.011	1
Pool Length (ft)			<u> </u>			-	-	-	7.0	13.0		30.0	-				-	1.8	3.0	3.1	4.0	0.011	1
Pool Length (π) Pool Max Depth (ft)			-	-	-	-	-	-	1.8	13.0	-	2.7	-	-	-	- 1.04	-	1.8	1.5	1.4	2.2	0.7	1
			_				-	-		_		53.0										_	-
Pool Spacing (ft)			-	-	-	-	-	-	18.0	39.0	-	33.0	-	-	-	29.9	-	12.1	26.4	28.4	35.2	6.8	1
Pattern						-	_			21.0								12.0	15.0	15 4	17.1	1.0	
Channel Belt Width (ft)			-	-	-	-	-	-	-	21.0	-	-	-	-	-	-	-	13.2	15.3	15.6	17.1	1.9	3
Radius of Curvature (ft)			-	-	-	-	-	-	-	18.0	-	-	-	-	7.0	-	12.0	8.7	14.1	15.6	16.7	3.6	4
Rc: Bankfull Width (ft)			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.2	2.0	2.2	2.4	0.5	2
M eander Wavelength (ft)			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	47.9	56.4	54.8	67.7	7.2	6
Meander Width Ratio			-	-	-	-	-	-	-	1.8	-	-	-	-	-	2	-	1.9	2.2	2.2	2.4	0.3	3
Calledon to Ded and Transmet Demonstration	1																						
Substrate, Bed and Transport Parameters Ri% / Ru% / P% / G% / S%											-								600/	0%/12	0//120	/ / 70/	
SC% / Sa% / G% / C% / B% / Be%			-							/ 2% / 4		00//10	1 / 60	/					0870/	070/12	270/137	/0/ / 7/0	
			-		-/5/6/1	1/15		4/36/				0											
d16/d35/d50/d84/d95/di ^p /di ^{sp} (mm)			-			1/13		14	+/30/			/ - / -											
Reach Shear Stress (Competency) lb/ft ²			_		-					0.562	2				-					-			
Max Part Size (mm) Mobilized at Bankfull			-		-						947					32							
Stream Power (Transport Capacity) W/m ²					-						-					-							
Additional Reach Parameters									1														
Drainage Area (mi ²)					0.09)					0.42												
Impervious Cover Estimate (%)					- F				-														
Rosgen Classification								B4c					B4				E	4					
Bankfull Velocity (fps)		-			-						3.8					-							
Bankfull Discharge (cfs)		15.73			-						28.0					16							
Valley Length (ft)					-						260.0)				695							
Channel Thalweg Length (ft)					-				-					725				6					
Sinuosity			-								1.50					1.0				0.9	77		
Water Surface Slope (ft/ft)											-					0.023				0.0	24		
Bankfull Slope (ft/ft)								-					-				0.0	24					
Bankfull Floodplain Area (acres)								-					-										
								-															
Proportion Over Wide (%)								-															
Proportion Over Wide (%)					-						-												
Proportion Over Wide (%) Entrenchment Class (ER Range)					- 23.1	1					-												
Proportion Over Wide (%) Entrenchment Class (ER Range) Incision Class (BHR Range)						l																	

- Information unavailable.

Non-Applicable.

					Table	5 co	nt'd.	Base	eline	Strea	m Da	ita Su	imma	ry										
				Pee	Dee	/ Proj	ject N	lo. 95	350	- Jerr	y Bra	nch 1	1 (430) feet)									
Parameter	Regi	ional (Curve		Pre-F	xistin	g Con	dition			Refe	rence	Reach	Data			Desig	n		As	Built /	Basel	ine	
Dimension & Substrate - Riffle	LL	UL	Eq.	Min	Mean	Med	Max	SD	Ν	Min	Mean	Med	Max	SD	Ν	Min	Mean	Max	Min	Mean	Med	Max	SD	Ν
Bankfull Width (ft)	-	-	3.79	3.5	5.3	5.3	7.0	2.5	2	9.8	11.7	-	13.1	-	-	-	7.9	-	8.1	8.1	8.1	8.1	-	1
Floodprone Width (ft)				3.3	6.2	6.2	9.0	4.0	2	16.0	18.0	-	21	-	-	-	-	-	31.8	31.8	31.8	31.8	-	1
Bankfull Mean Depth (ft)	-	-	0.64	0.6	0.6	0.6	0.6	0.0	2	0.5	0.62	-	0.8	-	-	-	0.42	-	0.5	0.5	0.5	0.5	-	1
Bankfull Max Depth (ft)				0.7	0.8	0.8	0.9	0.1	2	0.8	0.9	-	1.2	-	-	-	0.65	-	1.0	1.0	1.0	1.0	-	1
Bankfull Cross Sectional Area (ft ²)		3.5		2.0	2.9	2.9	3.8	1.3	2	5.4	7.3	-	8	-	-	-	3.3	-	3.7	3.7	3.7	3.7	-	1
Width/Depth Ratio				6.0	9.4	9.4	12.8	4.8	2	12.3	18.8	-	19.6	-	-	-	18.6	-	17.7	17.7	17.7	17.7	-	1
Entrenchment Ratio				0.5	1.6	1.6	2.6	1.5	2	1.4	1.5	1	1.8	-	-	-	2.5	-	3.9	3.9	3.9	3.9	-	1
Bank Height Ratio				2.4	7.7	7.7	12.9	7.4	2	0.9	1	1	1.4	-	-	-	-	-	1.0	1.0	1.0	1.0	-	1
d50 (mm)												-	-	-	-	-	-	-						
Profile																								
Riffle Length (ft)												1	30.0	-	-	-	-	-	2.6	6.2	6.2	16.4	2.8	26
Riffle Slope (ft/ft)				0.0								1	0.059	-	-	-	0.003	-	0.001	0.010		0.026	0.008	26
Pool Length (ft)				7.								1	30.0	-	-	-	-	-	2.3	5.9	5.4	16.0	2.9	26
Pool Max Depth (ft)				-	1.8	1.9	-	2.7	-	-	-	0.97	-	0.7	1.5	1.5	2.3	0.4	26					
Pool Spacing (ft)				-	18.0	39.0	-	53.0	-	-	-	22.5	-	6.1	15.0	14.2	27.8	5.1	25					
Pattern				18																				
Channel Belt Width (ft)				-	-	1	-	-	-	-	21.0	1	-	-	-	-	-	-	14.0	19.2	19.2	24.4	7.3	2
Radius of Curvature (ft)				-	-	-	-	-	-	-	18.0	-	-	-	-	12.0	-	17.0	11.6	13.6	13.1	16.5	2.2	4
Rc: Bankfull Width (ft)				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.4	1.7	1.6	2.0	0.3	2
Meander Wavelength (ft)				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	23.8	44.4	47.1	55.0	11.9	6
Meander Width Ratio				-	-	-	-	-	-	-	1.8	-	-	-	-	-	2	-	1.7	2.4	2.4	3.0	0.9	2
Substrate, Bed and Transport Parameters	1																							
Ri% / Ru% / P% / G% / S%							-						-							42%/	0% / 40	% / 7%	/ 11%	
SC% / Sa% / G% / C% / B% / Be%							-			40	6/2%	/ 49%	/ 38% /	1%/6	5%					,.,				
d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)						/5/6	/13/22						110/1											
Reach Shear Stress (Competency) lb/ft ²							-					0.5					-							
Max Part Size (mm) Mobilized at Bankfull							-			1			47				32							
Stream Power (Transport Capacity) W/m ²							-			1			-				-							
Additional Reach Parameters																-								
Drainage Area (mi ²)						0.	07					0.	42											
Impervious Cover Estimate (%)							-						-											
Rosgen Classification							-			1		В	4c				B4				В	4		
Bankfull Velocity (fps)		-					-			1			.8				-							
Bankfull Discharge (cfs)		13.12				(3						3.0				13		1					
Valley Length (ft)							-					26	0.0				406							
Channel Thalweg Length (ft)							-			1			-				435				43	30		
Sinuosity							-			1		1.	50				1.0				1.0)6		
Water Surface Slope (ft/ft)							-			1			-				0.037		1		0.0	265		
Bankfull Slope (ft/ft)							-			1			-				-		1		0.02			
Bankfull Floodplain Area (acres)							-			1			-				-							
Proportion Over Wide (%)							-			1			-											
Entrenchment Class (ER Range)							-			1			-											
Incision Class (BHR Range)							-			1			-											
BEHI						24	.03			1			-											
Channel Stability or Habitat Metric				-									-											
Biological or Other							-			1			-											
- Information unavailable.																						_		_

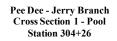
					Table	5 co	nt'd.	Base	line	Strea	m Da	ita Su	Imma	rv										
										- Jerr					;)									
Parameter	Regi	onal (Curve		Pre-H	xistin	g Con	dition			Refe	rence	Reach	Data]	Desig	n		As-	Built /	Base	ine	
Dimension & Substrate - Riffle	LL	UL	Eq.	Min	Mean	Med	Max	SD	Ν	Min	Mean	Med	Max	SD	N	Min	Mean	Max	Min	Mean	Med	Max	SD	N
Bankfull Width (ft)	-	-	4.78	3.5	6.0	6.6	8.0	2.3	3	9.8	11.7	-	13.1	-	-	-	7.1	-	7.1	7.1	7.1	7.1	-	1
Floodprone Width (ft)				2.5	10.8	15.0	15.0	7.2	2	16.0	18.0	-	21	-	-	-	-	-	16.0	16.0	16.0	16.0	-	1
Bankfull Mean Depth (ft)	-	-	0.76	0.4	0.6	0.7	0.8	0.2	3	0.5	0.62	-	0.8	-	-	-	0.53	-	0.4	0.4	0.4	0.4	-	1
Bankfull Max Depth (ft)				0.5	0.7	0.8	1.0	0.2	3	0.8	0.9	-	1.2	-	-	-	0.75	-	0.7	0.7	0.7	0.7	-	1
Bankfull Cross Sectional Area (ft ²)		5.1		2.4	2.7	2.7	3.0	0.3	3	5.4	7.3	-	8	-	-	-	3.7	-	3.1	3.1	3.1	3.1	-	1
Width/Depth Ratio				4.6	15.2	14.6	26.3	10.9	3	12.3	18.8	-	19.6	-	-	-	13.4	-	16.4	16.4	16.4	16.4	-	1
Entrenchment Ratio				0.7	1.6	1.9	2.3	0.8	3	1.4	1.5	-	1.8	-	-	-	3.5	-	2.3	2.3	2.3	2.3	-	1
Bank Height Ratio				1.0	3.5	1.5	7.9	3.8	3	0.9	1	-	1.4	-	-	-	-	-	1.0	1.0	1.0	1.0	-	1
d50 (mm)												-		-	-	-	-	-						
Profile																								
Riffle Length (ft)												-	30.0	-	-	-	-	-	3.1	9.0	8.7	26.5	4.5	29
Riffle Slope (ft/ft)				0.0								-	0.059	-	-	-	0.002	-	0.005	0.019	0.018	0.042	0.010	29
Pool Length (ft)				7								-	30.0	-	-	-	-	-	2.3	4.8	4.7	7.8	1.5	31
Pool Max Depth (ft)				-	-	-	-	-	-	1.8	1.9	-	2.7	-	-	-	1.13	-	0.9	1.5	1.5	2.2	0.3	29
Pool Spacing (ft)				-	-	18.0	39.0	-	53.0	-	-	-	21.7	-	12.0	18.0	16.8	36.2	5.1	30				
Pattern																								
Channel Belt Width (ft)				-	-	-	-	-	-	-	21.0	-	-	-	-	-	-	-	13.4	20.3	22.4	25.6	5.1	6
Radius of Curvature (ft)				-	-	-	-	-	-	-	18.0	-	-	-	-	11.0	-	17.0	12.1	13.4	12.7	16.5	1.8	5
Rc: Bankfull Width (ft)				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.7	1.9	1.8	2.3	0.2	2
Meander Wavelength (ft)				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	18.5	30.0	30.6	38.1	6.6	6
Meander Width Ratio				-	-	-	-	-	-	-	1.8	-	-	-	-	-	2	-	1.9	2.9	3.2	3.6	0.7	6
	,		Į	ļ	Į		ļ	ļ							ļ		Į	Į		2.7	5.2	5.0	0.7	-
Substrate, Bed and Transport Parameters				-																				
Ri% / Ru% / P% / G% / S%							-						-						4	7%/0	% / 27%	6 / 12%	<u>) / 14 /%</u>	6
SC% / Sa% / G% / C% / B% / Be%	<u> </u>						-						/ 38% /											
d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)	<u> </u>					/5/6	/13/22				14/36		110 / 17	70 / - /	-									
Reach Shear Stress (Competency) lb/ft ²							-					0.5					-							
Max Part Size (mm) Mobilized at Bankfull							-						47				32							
Stream Power (Transport Capacity) W/m ²							-						-				-							
Additional Reach Parameters																								
Drainage Area (mi ²)												0.												
Impervious Cover Estimate (%)							-						-											
Rosgen Classification							-					В					B4				В	4		
Bankfull Velocity (fps)		-					-						.8				-							
Bankfull Discharge (cfs)		19.35				(3					28	3.0				19							
Valley Length (ft)							-					26	0.0				485							
Channel Thalweg Length (ft)							-						-				625				62	25		
Sinuosity							-					1.	50				1.1				1.2	29		
Water Surface Slope (ft/ft)							-						-				0.024				0.0	24		
Bankfull Slope (ft/ft)							-						-				-				0.0	24		
Bankfull Floodplain Area (acres)							-						-				-							
Proportion Over Wide (%)				ſ			-			T			-											
Entrenchment Class (ER Range)							-						-											
Incision Class (BHR Range)				1			-			1			-											
BEHI						26	.67			1			-											
Channel Stability or Habitat Metric				-									-											
Biological or Other							-			1			-											
- Information unavailable.		-																						

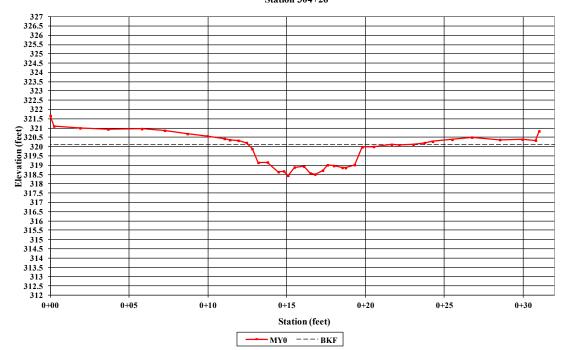
	Table 5 cont'd. Baseline Stream Data Summary Pee Dee / Project No. 95350 - Jerry Branch 3 (636 feet) Regional Curve Pre-Existing Condition Reference Reach Data Design As-																							
				Pe											et)									
Parameter	Regi	ional (Curve													I	Design	1		As-l	Built /	Basel	ine	
Dimension & Substrate - Riffle	LL	UL	Eq.	Min	Mean	Med	Max	SD	Ν	Min	Mean	Med	Max	SD	Ν	Min	Mean	Max	Min	Mean	Med	Max	SD	N
Bankfull Width (ft)	-	-	4.95	-	4.0	-	-	-	1	9.8	11.7	-	13.1	-	-	-	7.3	-	7.2	7.3	7.3	7.4	0.141	2
Floodprone Width (ft)				-	6.5	-	-	-	1	16.0	18.0	-	21	-	-	-	-	-	24.7	29.3	29.3	33.8	6.435	2
Bankfull Mean Depth (ft)	-	-	0.78	-	0.9	-	-	-	1	0.5	0.62	-	0.8	-	-	-	0.54	-	0.4	0.4	0.4	0.4	0	2
Bankfull Max Depth (ft)				-	1.1	-	-	-	1	0.8	0.9	-	1.2	-	-	-	0.77	-	0.8	0.9	0.9	0.9	0.071	2
Bankfull Cross Sectional Area (ft ²)		5.4		-	3.3	-	-	-	1	5.4	7.3	-	8	-	-	-	4.0	-	3.0	3.2	3.2	3.3	0.212	2
Width/Depth Ratio				-	4.8	-	-	-	1	12.3	18.8	-	19.6	-	-	-	13.5	-	16.6	17.2	17.2	17.7	0.778	2
Entrenchment Ratio				-	1.6	-	-	-	1	1.4	1.5	-	1.8	-	-	-	3.4	-	3.4	4.0	4.0	4.6	0.849	2
Bank Height Ratio				-	2.9	-	-	-	1	0.9	1	-	1.4	-	-	-	-	-	1.0	1.0	1.0	1.0	0.0	2
d50 (mm)					2.7	-		-	-	-	52	-	-	-	-	-	_	-	1.0	1.0	1.0	1.0	0.0	
Profile				-			-	-	_	_	52	_		-	_			_						
Riffle Length (ft)				-	-	-	-	-	-	4.0	14.0	-	30.0	-	-	-	_	-	3.1	9.0	8.7	26.5	4.5	29
Riffle Slope (ft/ft)		-	-	-	-	-	-	-	-	0.017	0.027	-	0.059	-	-	-	0.002	-	0.005	0.019	0.018	0.042	0.010	29
Pool Length (ft)				-	_	-	-	-	-	7.0	13.0	-	30.0	-	-	-	-	-	2.3	4.8	4.7	7.8	1.5	31
Pool Max Depth (ft)		-	-	-	-	-	-	-	-	1.8	13.0	-	2.7	-	-	-	- 1.15	-	0.9	1.5	1.5	2.2	0.3	29
Pool Spacing (ft)				-	-	-	-	-	-	18.0	39.0	-	53.0	-	-	-	23.9	-	12.0	18.0	16.8	36.2	5.1	30
1 0(7)				-	-	-	-	-	-	18.0	39.0	-	35.0	-	-	-	23.9	-	12.0	18.0	10.8	50.2	5.1	50
Pattern						-	-		-	-	21.0	-	-		r	1		-	20.0	24.2	26.0	265	2.6	3
Channel Belt Width (ft)				-	-	-	-	-	-	-	18.0	-	-	-	-	12.0	-		20.0	24.2	26.0	26.5	3.6	
Radius of Curvature (ft)			-	-	-	-	-	-	-	-	- 18.0	-	-	-	-	-	-	17.0	9.2	12.1	10.6	17.0	2.8	7
Rc: Bankfull Width (ft)										-					-				1.3	1.7	1.5	2.3	0.4	1
Meander Wavelength (ft)				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	34.1	43.9	44.8	54.4	8.1	6
Meander Width Ratio				-	-	-	-	-	-	-	1.8	-	-	-	-	-	2	-	2.7	3.3	3.6	3.6	0.5	3
Substrate, Bed and Transport Parameters																								
Ri% / Ru% / P% / G% / S%							-						-							60% / 0	%/21	% / 10	%/9%	
SC% / Sa% / G% / C% / B% / Be%							-			49	% / 2%	/ 49%	/ 38% /	1%/6	5%									
d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)						/5/6	/13/22				14/36	/ 52 /	110 / 1	70 / - /	-									
Reach Shear Stress (Competency) lb/ft ²							-					0.5	562				-				-			
Max Part Size (mm) Mobilized at Bankfull							-					9	47				32				-			
Stream Power (Transport Capacity) W/m ²							-						-				-							
Additional Reach Parameters																								
Drainage Area (mi ²)												0.	42											
Impervious Cover Estimate (%)							-						-											
Rosgen Classification						(G					В	4c				B4				В	4		
Bankfull Velocity (fps)		-					-					3	.8				-							
Bankfull Discharge (cfs)		20.49					-					28	8.0				20							
Valley Length (ft)							-						0.0				624							
Channel Thalweg Length (ft)							-						-				670				63	6		
Sinuosity							-					1	.50				1.00				1.0	-		
Water Surface Slope (ft/ft)		_	_				-			1			-				0.0240				0.02			
Bankfull Slope (ft/ft)				<u> </u>			-			<u> </u>			-				-				0.02			
Bankfull Floodplain Area (acres)							-						-				-							
Proportion Over Wide (%)							-			<u> </u>			-											
Entrenchment Class (ER Range)			_				-			+			-				_	_			_		_	_
Incision Class (BHR Range)	-		_				-						-				_	_			_	_		_
BEHI							- 1.4						-					_			_	_		_
Channel Stability or Habitat Metric							-			<u> </u>			-											_
Biological or Other							-						-							_		_		
- Information unavailable.				I			-			1			-											

	Table 5 cont'd. Baselin Pee Dee / Project No. 9535 Regional Curve Pre-Existing Condition																							
				Pee	Dee	/ Pro	ject I	No. 95	5350	- Huc	lson l	Branc	ch (59	feet)				_					
Parameter	Regi	ional (Curve		Pre-H	Existi	ng Con	dition			Refe	rence	Reach	Data			Desig	1		As-	Built /	Basel	ine ¹	
Dimension & Substrate - Riffle	LL	UL	Eq.	Min	Mean	Med	Max	SD	Ν	Min	Mean	Med	Max	SD	Ν	Min	Mean	Max	Min	Mean	Med	Max	SD	Ν
Bankfull Width (ft)	-	-	2.63	-	4.5	-	-	-	1	9.8	11.7	-	13.1	-	-	-	7.3	-						
Floodprone Width (ft)				-	8.0	-	-	-	1	16.0	18.0	-	21	-	-	-	-	-						
Bankfull Mean Depth (ft)	-	-	0.49	-	0.5	-	-	-	1	0.5	0.62	-	0.8	-	-	-	0.34	-						
Bankfull Max Depth (ft)				-	0.7	-	-	-	1	0.8	0.9	-	1.2	-	-	-	0.52	-						
Bankfull Cross Sectional Area (ft2)		2.0		-	2.1	-	-	-	1	5.4	7.3	1	8	-	-	-	2.1	-						
Width/Depth Ratio				-	9.5	-	-	-	1	12.3	18.8	1	19.6	-	-	-	18.7	-						
Entrenchment Ratio				-	1.8	-	-	-	1	1.4	1.5	1	1.8	-	-	-	4.8	-						
Bank Height Ratio				-	3.6	-	-	-	1	0.9	1	1	1.4	-	-	-	-	-						
d50 (mm)												1	-	-	-	-	-	-						
Profile																	-	-		-				
Riffle Length (ft)				1.0								1	30.0	-	-	-	-	-	8.89	10.2	10.2	11.5	1.86	2
Riffle Slope (ft/ft)				0.017								1	0.059	-	-	-	0.003	-	0.017	0.017	0.017	0.018	0.001	2
Pool Length (ft)				7.0								1	30.0	-	-	-	-	-	5.4	7.33	7.1	9.51	2.07	3
Pool Max Depth (ft)				1.8								-	2.7	-	-	-	0.77	-	1.37	1.77	1.82	2.14	0.39	3
Pool Spacing (ft)												-	53.0	-	-	-	15.9	-	11.5	16.6	16.6	21.8	7.26	2
Pattern				18.0																				
Channel Belt Width (ft)												1	-	-	-	-	-	-	10.2	10.2	10.2	10.2	-	1
Radius of Curvature (ft)				-	-	-	-	-	-	-	18.0	1	-	-	-	9.0	-	14.0	-	-	-	ı.	-	-
Rc: Bankfull Width (ft)				-	-	-	-	-	-	-		1	-	-	-	-	-	-	-	-	-	ł	-	-
Meander Wavelength (ft)				-	-	-	-	-	-	-		1	-	-	-	-	-	-	-	-	-	ı	-	-
Meander Width Ratio				-	-	-	-	-	-	-	1.8	1	-	-	-	-	2	-	1.4	1.4	1.4	1.4	-	1
Substrate, Bed and Transport Parameters	1																							
Ri% / Ru% / P% / G% / S%							-			1			-							160/ /	0%/5	00/ / 00	/ / 10/	
SC% / Sa% / G% / C% / B% / Be%							-			40	% / 2%			10/ / 6	0/					40707	07073	070703	/0 / 4 /0	_
							-				14/36													
d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm) Reach Shear Stress (Competency) lb/ft ²							-				14/30	0.5		/0/-/	-							-		_
Max Part Size (mm) Mobilized at Bankfull							-						47				32					-		
							-						-				-					-		
Stream Power (Transport Capacity) W/m ² Additional Reach Parameters							-						-				-							
										1		0	42											
Drainage Area (mi ²) Impervious Cover Estimate (%)													-											
Rosgen Classification							G					В					B4		-		F	4		
Bankfull Velocity (fps)		-					-						.8				-					-		
Bankfull Discharge (cfs)		7.13					-						.0 3.0				7							
Valley Length (ft)		7.15					-					26					55							
Channel Thalweg Length (ft)													-				102				5	0		
Sinuosity													50				1.10				1.			
Water Surface Slope (ft/ft)				-									-				0.0120)			0.0			,
Bankfull Slope (ft/ft)				-									-				-	,	+		0.0			
Bankfull Floodplain Area (acres)			-										-								0.0	-15		
Proportion Over Wide (%)			-										-				-							
Entrenchment Class (ER Range)			-										-											_
Incision Class (BHR Range)													-											_
BEHI			-										-											_
Channel Stability or Habitat Metric			-										-											_
Biological or Other			_										-				_	_	-	_	_		_	_
- Information unavailable		-											-											

¹This reach limited to visual assessment since it is less than 500 feet

	1				(Di	imens	sional	Para	mete	rs - C	ross-	Secti	ons)	Summ erry B	•	Ì								
		C	Read ross-S Po	ection	1			Ci	Rea ross-S Rif	ection	2			Cr	Read oss-So Po	ection	3			C	Read Tross-Se Rif	ection	4	
Dimension	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5
Record Elevation (datum) Used	320.1						319.6						312.9						310.6					
Bankfull Width (ft)	9.1						8.1						7.8						7.1					
Floodprone Width (ft)	>25						>30						>30						>25					
Bankfull Mean Depth (ft)	0.9						0.5						1.1						0.4					
Bankfull Max Depth (ft)	1.7						1.0						2.3						0.7					
Bankfull Cross Sectional Area (ft ²)	8.5						3.7						8.3						3.1					
Bankfull Width/Depth Ratio	9.8						17.7						7.4						16.4					
Bankfull Entrenchment Ratio	>2.5						>3.9						>3.6						>2.3					
Bankfull Bank Height Ratio	1.0						1.0						1.0						1.0					
Cross Sectional Area between End Pins (ft ²)	24.1						12.7						32.1						24.8					
d50 (mm)	N/A						N/A						N/A						N/A					

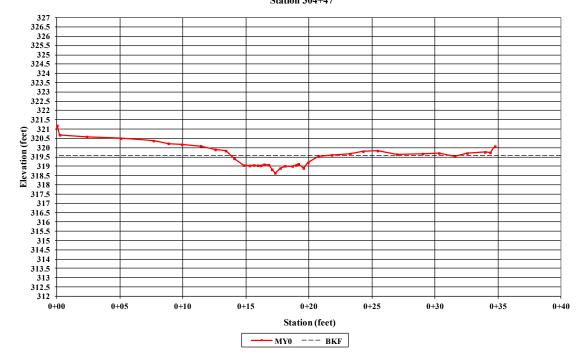

Table Pee D		(Dii	me nsi	ional	Parai	netei	rs - C	ross-	Sectio	ons)			•					
		Cı	Read ross-S Po	ection	5			C	Rea ross-S Rif	ection	6			Cr	Reac oss-Se Rifl	ection	7	
Dimension	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5
Record Elevation (datum) Used	301.7						298.8						290.2					
Bankfull Width (ft)	8.1						7.4						7.2					
Floodprone Width (ft)	>25						>30						>25					
Bankfull Mean Depth (ft)	1.0						0.4						0.4					
Bankfull Max Depth (ft)	1.8						0.9						0.8					
Bankfull Cross Sectional Area (ft ²)	7.9						3.3						3.0					
Bankfull Width/Depth Ratio	8.3						16.6						17.7					
Bankfull Entrenchment Ratio	>2.1						>4.6						>3.4					
Bankfull Bank Height Ratio	1.0						1.0						1.0					
Cross Sectional Area between End Pins (ft ²)	18.6						40.4						24.6					
d50 (mm)	N/A						N/A						N/A					


					(]	Dime	nsion	al Pai	amet	ers -	Cros	s-Sec	tions	logy S) Dale I		·								
		Cr	Reac oss-Se Rifi	ection	8			C	Read ross-S Po	ection	9			Cr	Reacl oss-Sec Riff	tion 1	0			Cr	Reacl oss-Sec Poo	tion 1	1	
Dimension	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5
Record Elevation (datum) Used	354.9						354.7						348.1						347.4					
Bankfull Width (ft)	7.0						7.7						6.4						7.6					
Floodprone Width (ft)	>25						>25						>25						>20					
Bankfull Mean Depth (ft)	0.3						0.6						0.3						0.8					
Bankfull Max Depth (ft)	0.7						1.7						0.5						1.6					
Bankfull Cross Sectional Area (ft ²)	2.0						4.8						1.8						6.1					
Bankfull Width/Depth Ratio	24.6						12.3						22.6						9.5					
Bankfull Entrenchment Ratio	>3.4						>2.7						>2.4						>2.2					
Bankfull Bank Height Ratio	1.0						1.0						1.0						1.0					
Cross Sectional Area between End Pins (ft ²)	30.9						28.2						26.0						40.8					
d50 (mm)	N/A						N/A						N/A						N/A					

					(]	Dime	nsion	al Pai	·ame t	ers -	Cros	s-Sec	ctions	ology S) Dale I		•								
		Cro	Reac DSS-Se Riff	ction 1	2			Cr	Read oss-Se Po	ction	13			Cr	Reacl oss-Sec Poo	tion 1	4			Cr	Reacl oss-Sec Riffl	tion 15	5	
Dimension	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5
Record Elevation (datum) Used	327.8						326.1						315.3						314.1					
Bankfull Width (ft)	7.3						7.8						6.7						6.5					
Floodprone Width (ft)	>20						>20						>30						>40					
Bankfull Mean Depth (ft)	0.3						0.5						0.9						0.5					
Bankfull Max Depth (ft)	0.7						1.3						2.0						0.9					
Bankfull Cross Sectional Area (ft ²)	2.5						3.9						6.2						3.1					
Bankfull Width/Depth Ratio	21.1						15.7						7.1						13.8					
Bankfull Entrenchment Ratio	>2.5						>2.2						>4.7						>6.8					
Bankfull Bank Height Ratio	1.0						1.0						1.0						1.0					
Cross Sectional Area between End Pins (ft ²)	39.1						31.9						64.9						17.0					
d50 (mm)	N/A						N/A						N/A						N/A					

	e 6 co e Dee	(D	imens	sional	Para	mete	ers - (Cross	-Sect	ions)	01		·					
		Cro	Reac oss-See Riff	ction 1	6			Cr	Rea oss-Se Rif	ection	17			Cr	Reacl oss-Sec Poo	tion 18	3	
Dimension	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5
Record Elevation (datum) Used	303.5						286.8						286.6					
Bankfull Width (ft)	6.3						7.1						7.2					
Floodprone Width (ft)	>25						>25						>25					
Bankfull Mean Depth (ft)	0.3						0.5						0.8					
Bankfull Max Depth (ft)	0.7						0.7						1.7					
Bankfull Cross Sectional Area (ft ²)	1.9						3.3						5.9					
Bankfull Width/Depth Ratio	21.0						15.2						8.7					
Bankfull Entrenchment Ratio	>3.5						>3.4						>3.1					
Bankfull Bank Height Ratio	1.0						1.0						1.0					
Cross Sectional Area between End Pins (ft ²)	19.6						20.0						24.0					
d50 (mm)	N/A						N/A						N/A					

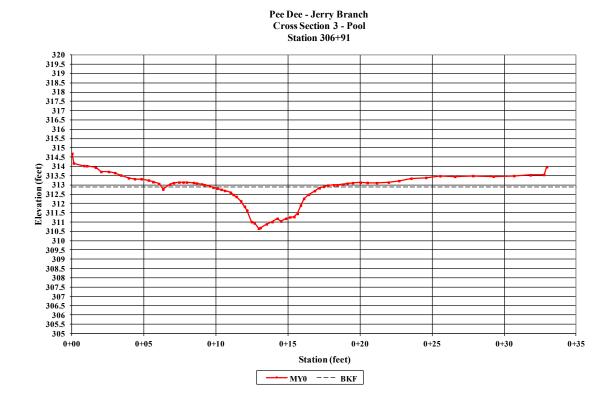
					(Din	nensi	onal	Parar	neter	s - C	ross-	Secti	ons)		umm: on Bra	•								
		Cr	Read oss-Se Po	ection	19			Cr	Rea oss-Se Rif	ection	20			Cr	Read oss-Se Po	ction	21			Cr	Rea oss-So Rif	ection	22	
Dimension	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5
Record Elevation (datum) Used	364.1						363.2						356.0						356.0					
Bankfull Width (ft)	8.4						7.5						8.6						7.6					
Floodprone Width (ft)	>30						>30						>30						>30					
Bankfull Mean Depth (ft)	1.0						0.6						1.0						0.6					
Bankfull Max Depth (ft)	2.1						1.2						2.3						1.1					
Bankfull Cross Sectional Area (ft ²)	8.8						4.2						8.5						4.3					
Bankfull Width/Depth Ratio	8.0						13.3						8.7						13.4					
Bankfull Entrenchment Ratio	>4						>4.1						>3.2						>4.5					
Bankfull Bank Height Ratio	1.0						1.0						1.0						1.0					
Cross Sectional Area between End Pins (ft ²)	54.2						35.5						28.2						31.5					
d50 (mm)	N/A						N/A						N/A						N/A					


Upstream

Downstream

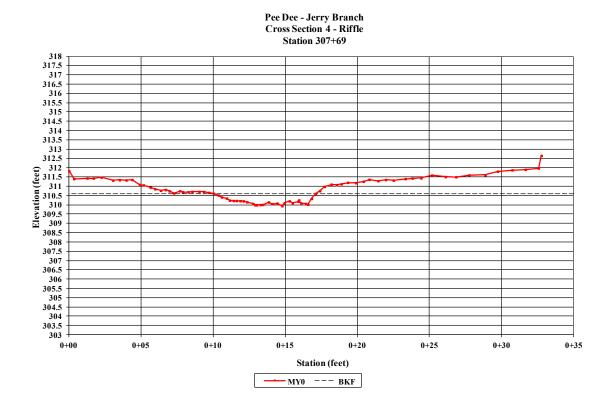
Pee Dee - Jerry Branch Cross Section 2 - Riffle Station 304+47

Left Descending Bank

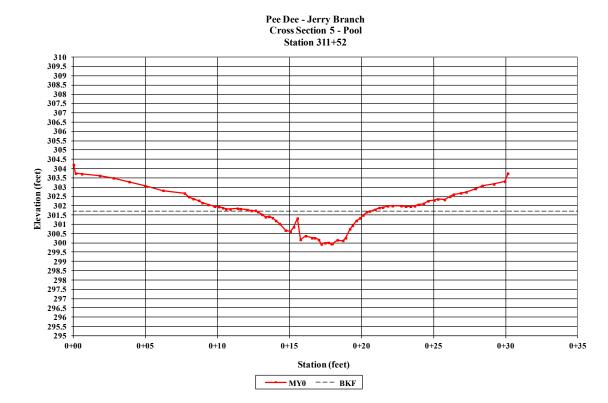

Upstream

Right Descending Bank

Downstream


Upstream

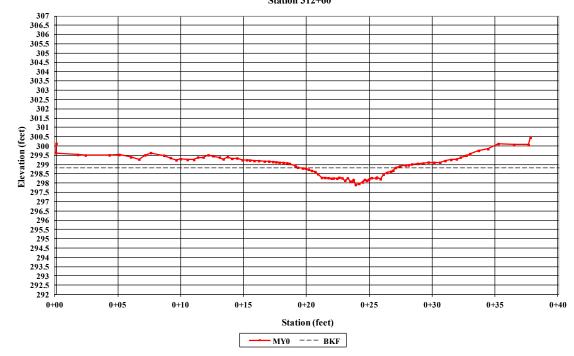
Right Descending Bank



Upstream

Right Descending Bank

Upstream



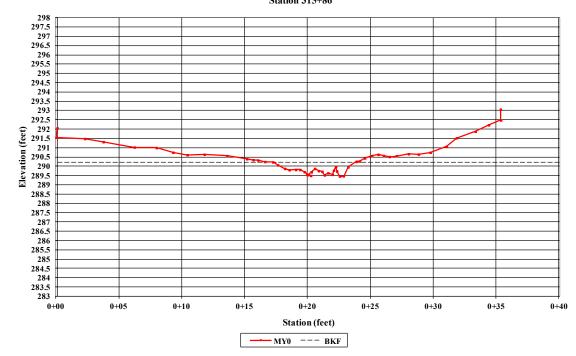
Right Descending Bank

Downstream

Pee Dee - Jerry Branch Cross Section 6 - Riffle Station 312+60

Left Descending Bank

Upstream

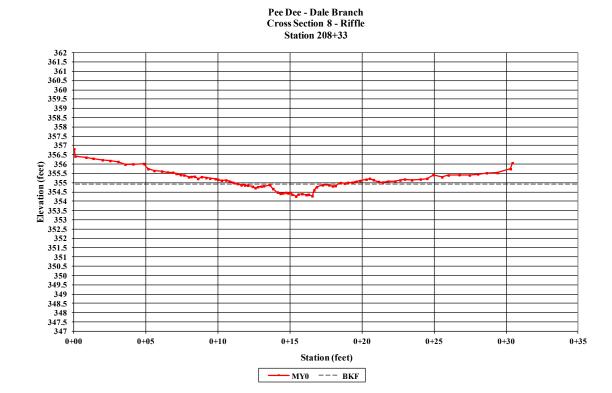


Right Descending Bank

Downstream

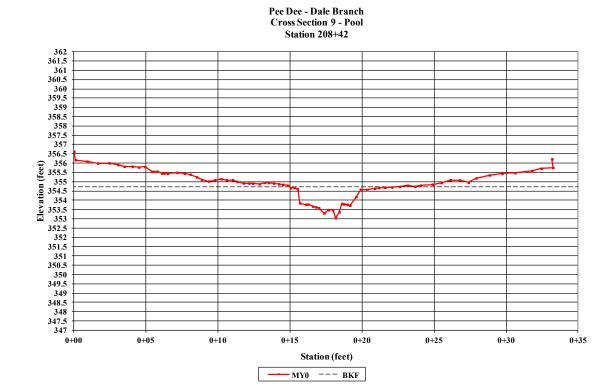
Pee Dee - Jerry Branch Cross Section 7 - Riffle Station 315+86

Left Descending Bank


Upstream

Right Descending Bank

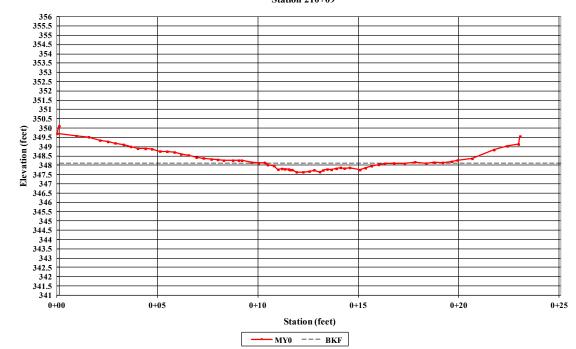
Downstream


Upstream

Right Descending Bank

Downstream

Upstream



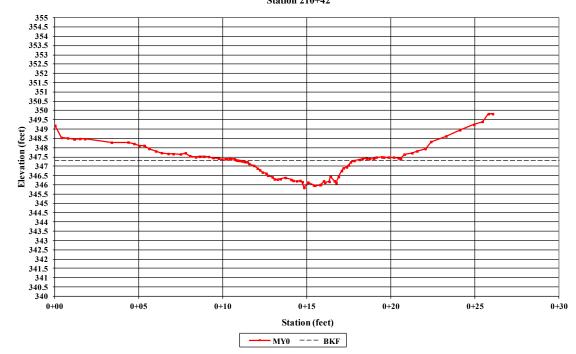
Right Descending Bank

Downstream

Pee Dee - Dale Branch Cross Section 10 - Riffle Station 210+09

Left Descending Bank

Upstream



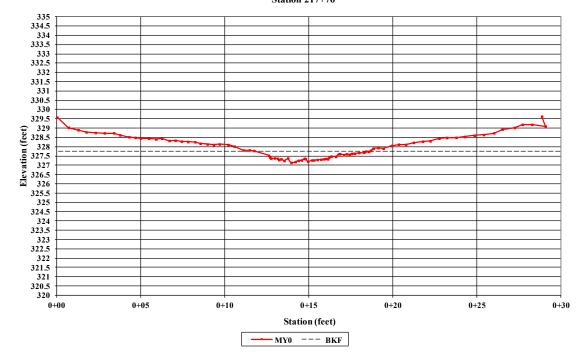
Right Descending Bank

Downstream

Pee Dee - Dale Branch Cross Section 11 - Pool Station 210+42

Left Descending Bank

Upstream



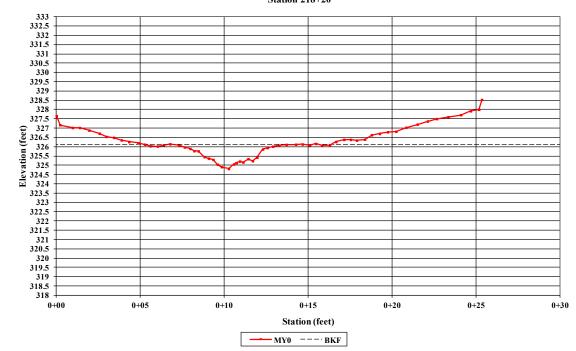
Right Descending Bank

Downstream

Pee Dee - Dale Branch Cross Section 12 - Riffle Station 217+76

Left Descending Bank

Upstream



Right Descending Bank

Downstream

Pee Dee - Dale Branch Cross Section 13 - Pool Station 218+20

Left Descending Bank

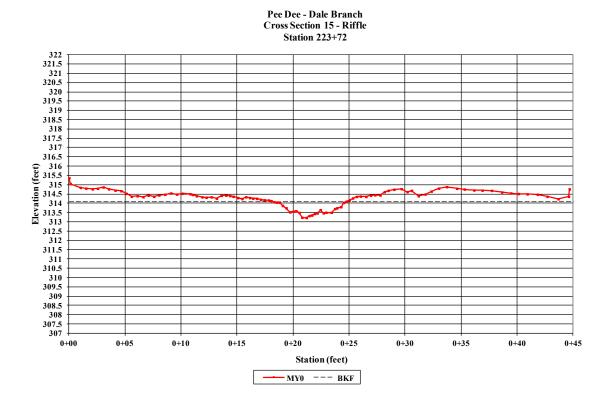
Upstream

Right Descending Bank

Downstream

MY0 --- BKF

Left Descending Bank


Upstream

Right Descending Bank

Downstream

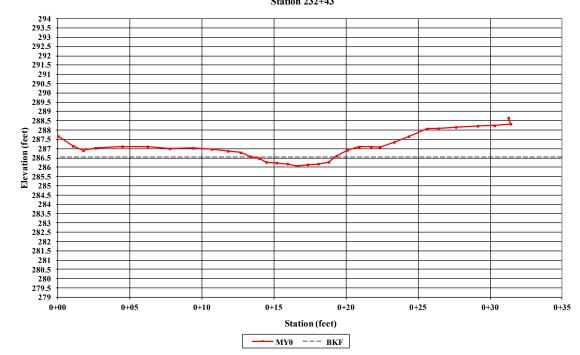
Upstream

Right Descending Bank

Downstream

Per Da Branch Data Section 16 - Riffic Jation 227+39

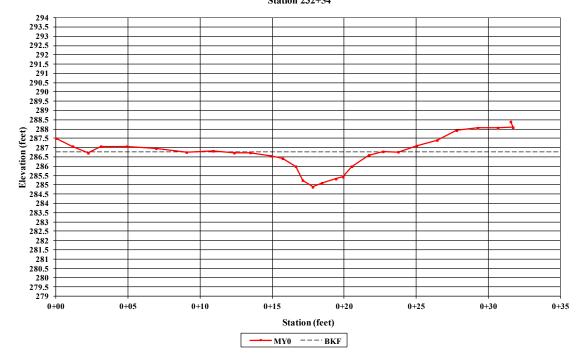
Upstream



Right Descending Bank

Downstream

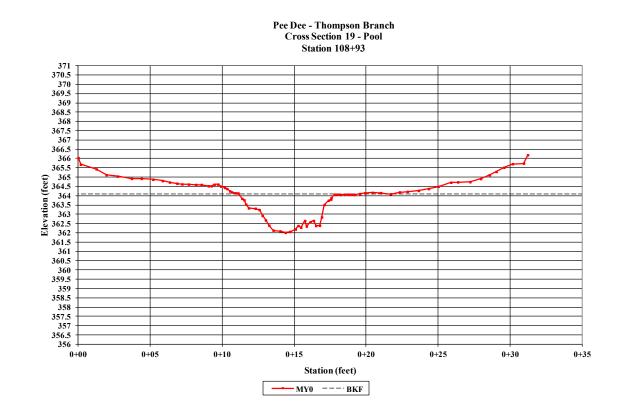
Pee Dee - Dale Branch Cross Section 17 - Riffle Station 232+43


Upstream

Right Descending Bank

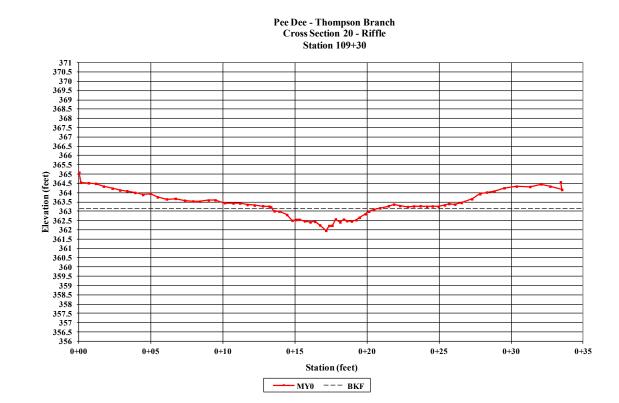
Downstream

Pee Dee - Dale Branch Cross Section 18 - Pool Station 232+54


Upstream

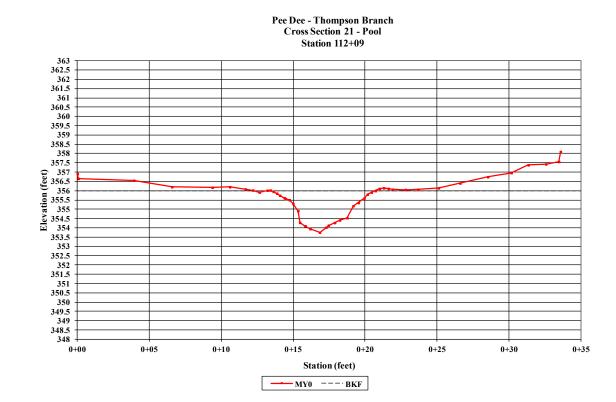
Right Descending Bank

Downstream

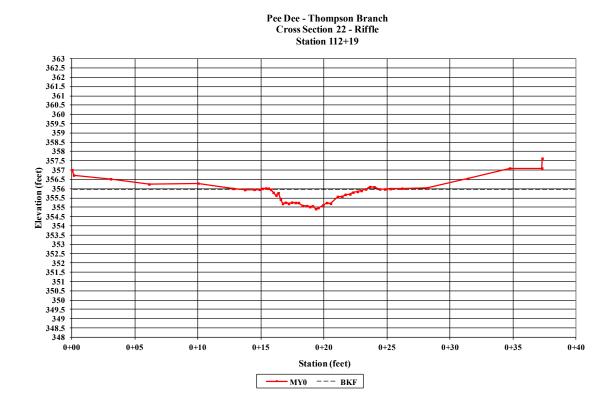

Upstream

Right Descending Bank

Downstream


Upstream

Right Descending Bank


Upstream

Right Descending Bank

Downstream

Upstream

Right Descending Bank

Downstream

Appendix C Vegetation Data

Table 7. MY0 Plot Data (MY0 2015)																
Pee Dee / Project No. 95350																
		Species	Plot 01		Plo	ot 02 F		Plot 03		Plot 04		Plot 05		Plot 06		t 07
Scientific Name	Common Name	Туре	P-all	Т	P-all	Т	P-all	Т	P-all	Т	P-all	Т	P-all	Т	P-all	Т
Betula nigra	River birch	Tree	9	9	5	5	5	5			6	6	2	2	12	12
Fraxinus pennsylvanica	Green ash	Tree	3	3	1	1	2	2	1	1	4	4	8	8	1	1
Liriodendron tulipifera v	Tulip-tree	Tree	2	2			1	1	3	3						
Platanus occidentalis var	Sycamore	Tree	5	5	10	10	1	1	1	1	3	3	2	2	7	7
Quercus spp.	Oak	Tree	2	2	4	4	7	7	11	11	8	8	2	2	1	1
Quercus michauxii	Swamp chestnut oak	Tree			4	4	3	3	1	1			4	4		
Quercus nigra	Water oak	Tree	4	4			1	1	1	1	3	3	2	2	1	1
Quercus phellos	Willow oak	Tree					8	8	3	3			3	3		
Stem count			25	25	24	24	28	28	21	21	24	24	23	23	22	22
size (ares)			1		1		1		1		1		1		1	
	size (ACRES)				0.02		0.02		0.02		0.02		0.02		0.02	
		Species count	6	6	5	5	8	8	7	7	5	5	7	7	5	5
	Stems per ACRE				971	971	1133	1133	850	850	971	971	931	931	890	890

Table 7 cont'd. MY0 Data (MY0 2015)																		
Pee Dee / Project No. 95350																		
Scientific Name	Common Name	~p • • • • •	Plot 0 P-all	-	Plot 0 P-all	9 T	Plot 1 P-all		Plot 1 P-all	1	Plot 1 P-all		Plot 1 P-all	3 T	Plot 1 P-all	4 T		Annual (2015) T
	River birch	Tree	1 411	-	6	6	1 411	-	1 an	-	2	2	4	4	1 411	-	51	51
Fraxinus pennsylvanica	Green ash	Tree			6	6	3	3			2	2	1	1	1	1	33	33
Liriodendron tulipifera v		Tree			2	2	8	8									16	16
Platanus occidentalis van	Sycamore	Tree			3	3	7	7	17	17	9	9	9	9	13	13	87	87
Quercus spp.	Oak	Tree	18	18	8	8			6	6	4	4	4	4	8	8	83	83
Quercus michauxii	Swamp chestnut oak	Tree											2	2			14	14
Quercus nigra	Water oak	Tree	3	3			2	2									17	17
Quercus phellos	Willow oak	Tree					1	1			3	3					18	18
		Stem count	21	21	25	25	21	21	23	23	20	20	20	20	22	22	319	319
size (ares)			1		1		1		1		1		1		1		14	
	size (ACRES)				0.02		0.02		0.02		0.02		0.02		0.02		0.35	
	Species count 2				5	5	5	5	2	2	5	5	5	5	3	3	8	8
	Ster	ns per ACRE	850	850	1012	1012	850	850	931	931	809	809	809	809	890	890	922	922

Table 8. Vegetation Plot Criteria Attainment								
Pee Dee / Project No. 95350								
Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean						
1	Yes							
2	Yes							
3	Yes							
4	Yes							
5	Yes							
6	Yes							
7	Yes	1000/						
8	Yes	100%						
9	Yes							
10	Yes							
11	Yes							
12	Yes							
13	Yes							
14	Yes							

Vegetation Monitoring Plot 1

Vegetation Monitoring Plot 2

Vegetation Monitoring Plot 3

Vegetation Monitoring Plot 4

Vegetation Monitoring Plot 5

Vegetation Monitoring Plot 6

Vegetation Monitoring Plot 7

Vegetation Monitoring Plot 8

Vegetation Monitoring Plot 9

Vegetation Monitoring Plot 10

Vegetation Monitoring Plot 11

Vegetation Monitoring Plot 12

Vegetation Monitoring Plot 13

Vegetation Monitoring Plot 14

Appendix D Permanent Photo Stations

Jerry Branch – Permanent Photo Station 1 Station 300+25 - Downstream

Jerry Branch – Permanent Photo Station 2 Station 305+04 - Upstream

Jerry Branch – Permanent Photo Station 2 Station 305+04 - Downstream

Hudson Branch – Permanent Photo Station 2 Station 305+04 - Upstream

Jerry Branch – Permanent Photo Station 3 Looking North Northwest/Upstream Jerry Branch

Jerry Branch – Permanent Photo Station 4 Station 304+80 - Upstream

Jerry Branch – Permanent Photo Station 4 Station 304+80 - Downstream

Jerry Branch – Permanent Photo Station 5 Station 316+95 - Upstream

Dale Branch – Permanent Photo Station 6 Station 204+15 - Upstream

Dale Branch – Permanent Photo Station 7 Station 205+15 - Upstream

Dale Branch – Permanent Photo Station 8 Station 212+95 - Upstream

Dale Branch – Permanent Photo Station 8 Station 212+95 - Downstream

Dale Branch – Permanent Photo Station 9 Looking North Northwest – Upstream Dale

Dale Branch – Permanent Photo Station 9 Looking South Southeast- Downstream Dale

Dale Branch – Permanent Photo Station 10 Looking North Northeast – Upstream Dale

Dale Branch – Permanent Photo Station 10 Looking South Southwest – Downstream Dale

Dale Branch – Permanent Photo Station 11 Station 229+20 – Upstream

Dale Branch – Permanent Photo Station 11 Station 229+20 – Downstream

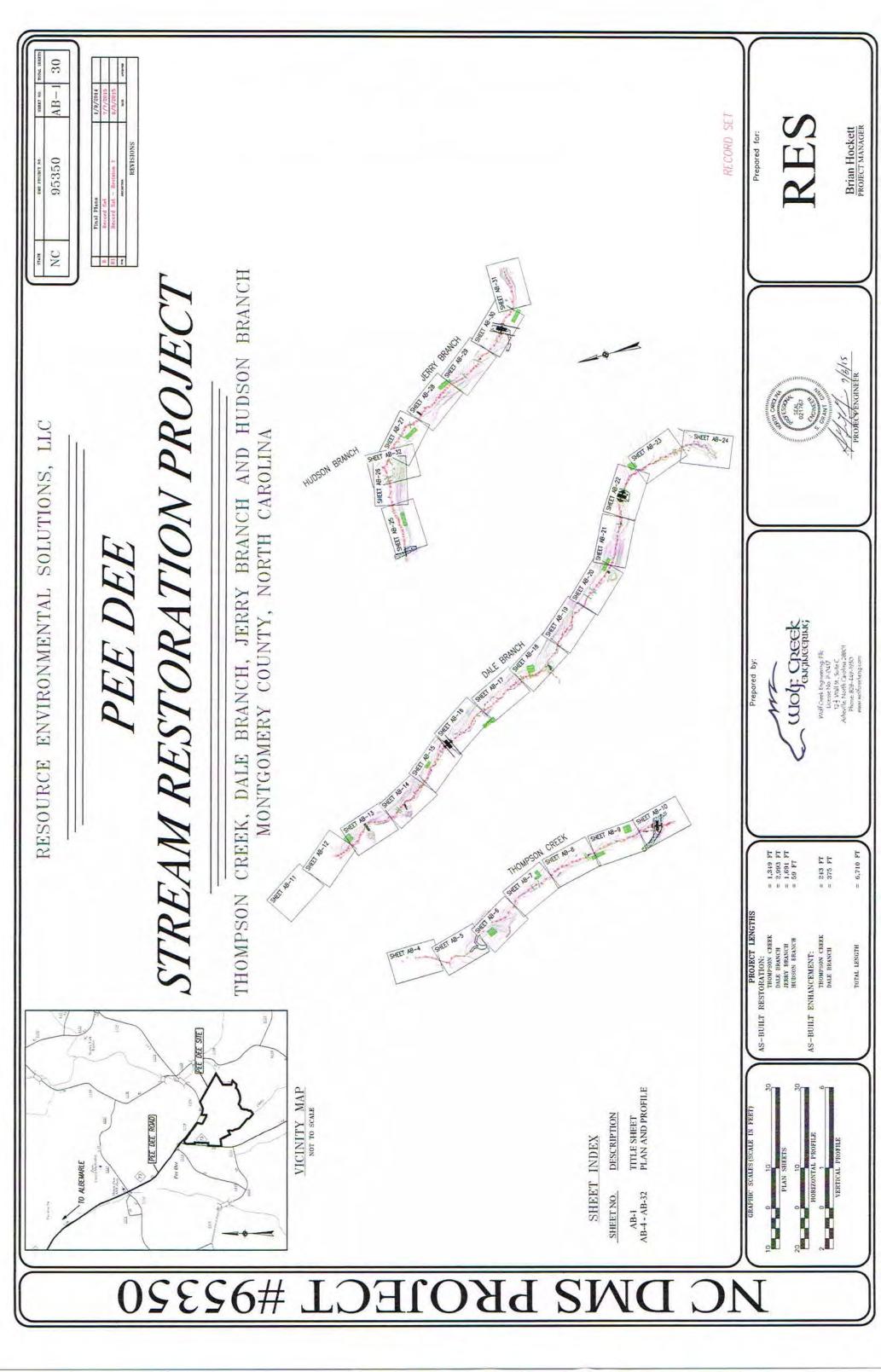
Dale Branch – Permanent Photo Station 12 Station 234+25 – Upstream

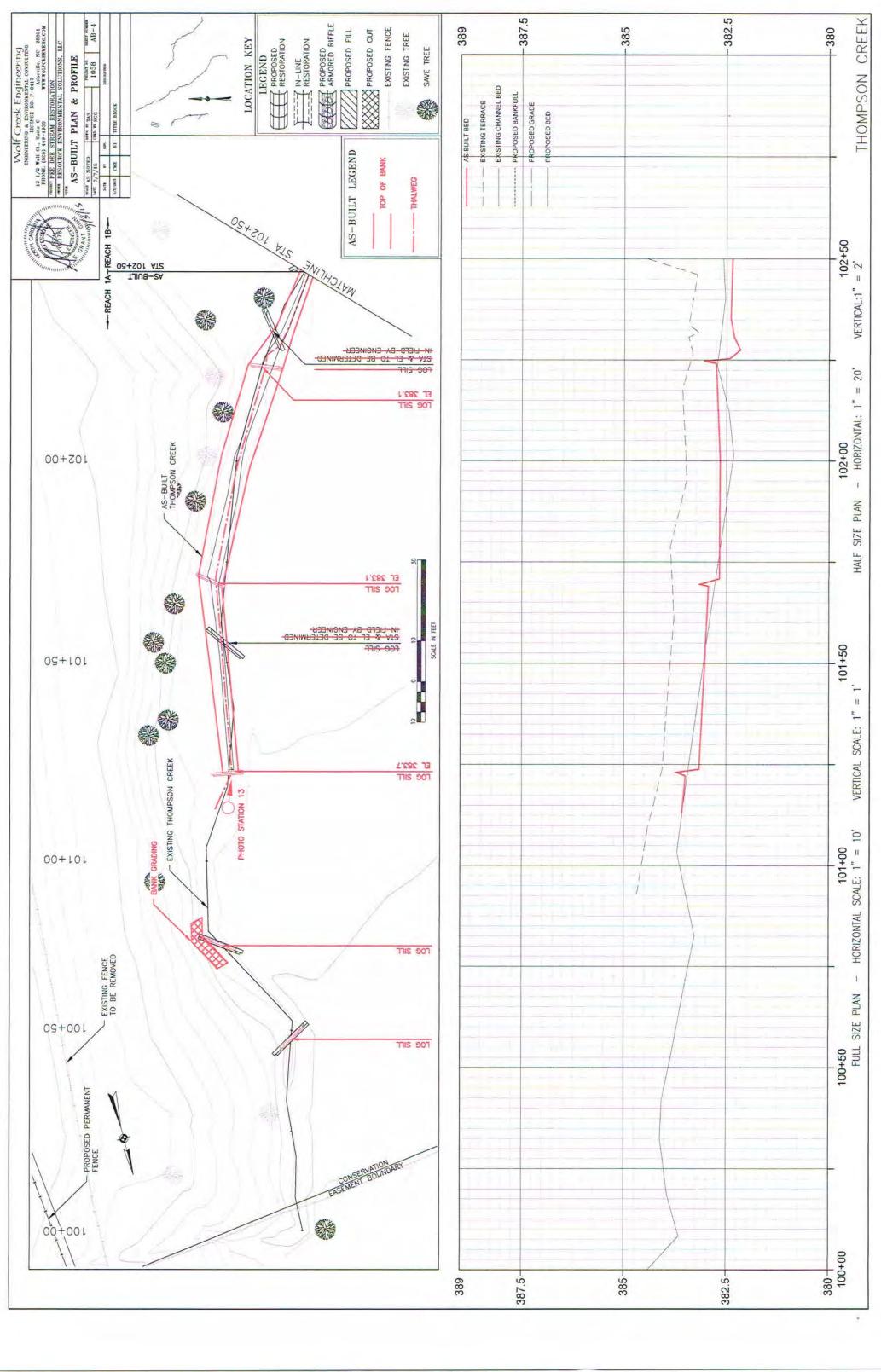
Dale Branch – Permanent Photo Station 12 Station 234+25 – Downstream

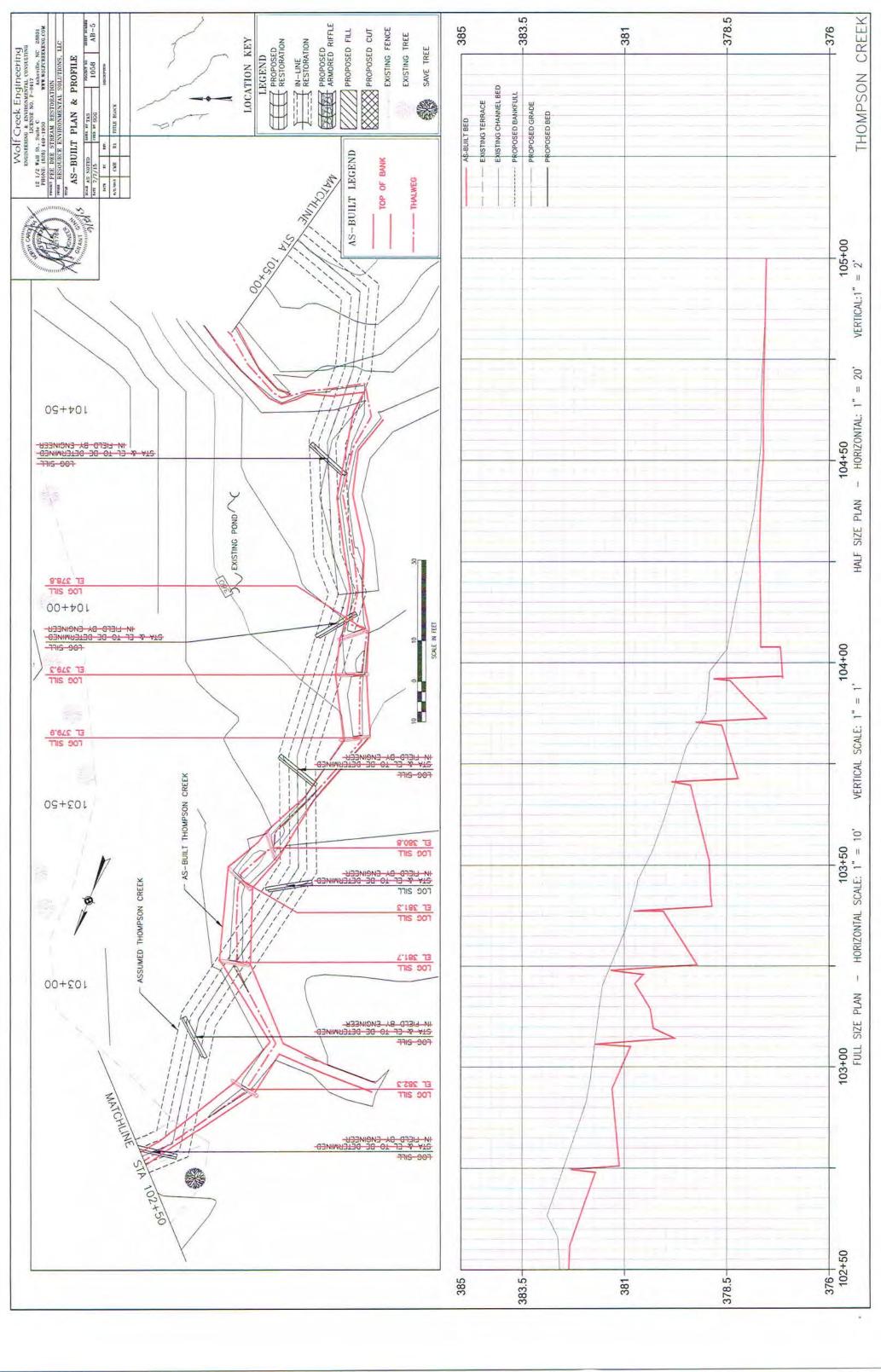
Thompson Branch – Permanent Photo Station 13 Station 101+15 – Downstream

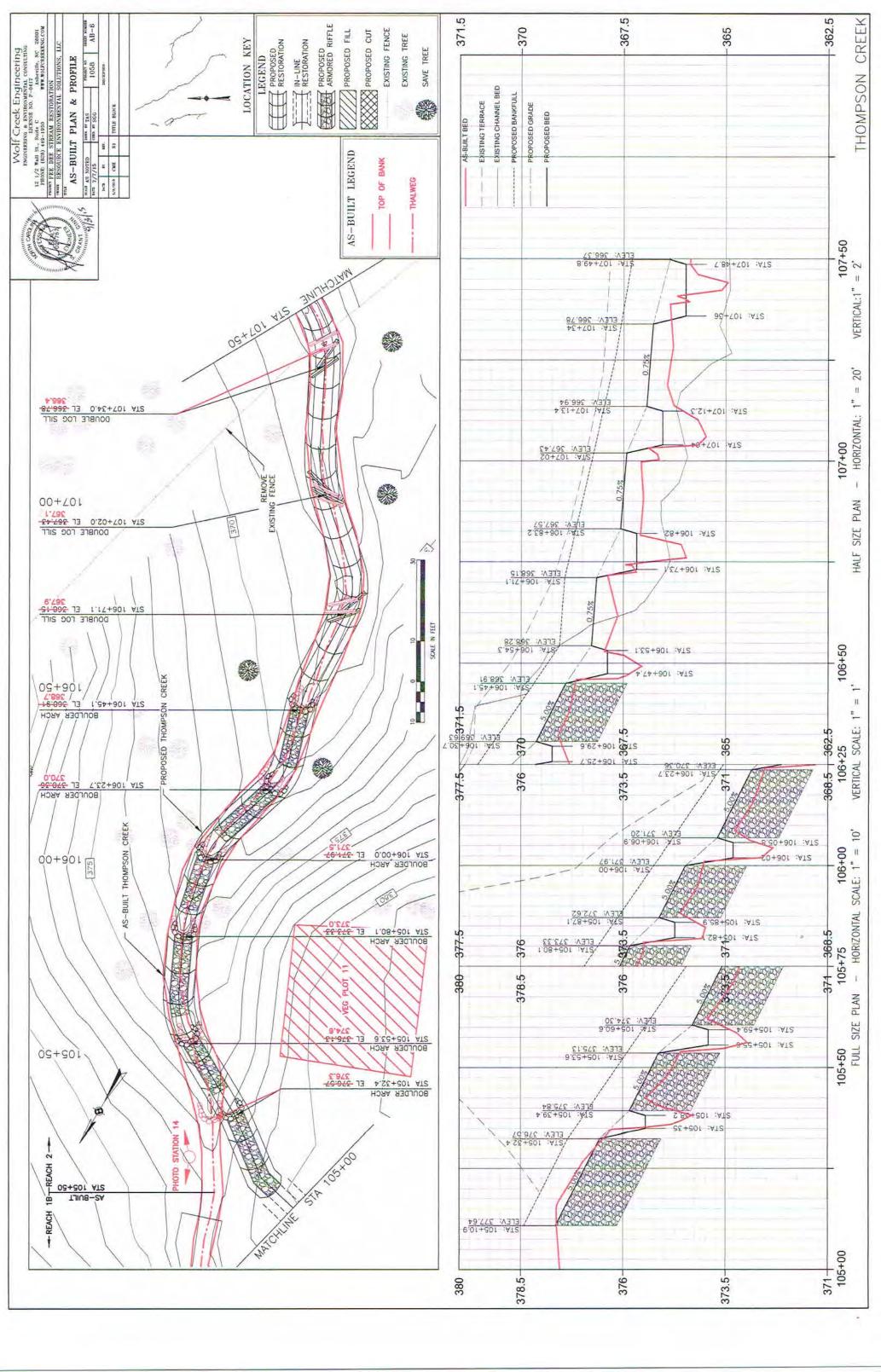
Thompson Branch – Permanent Photo Station 14 Station 105+25 – Upstream

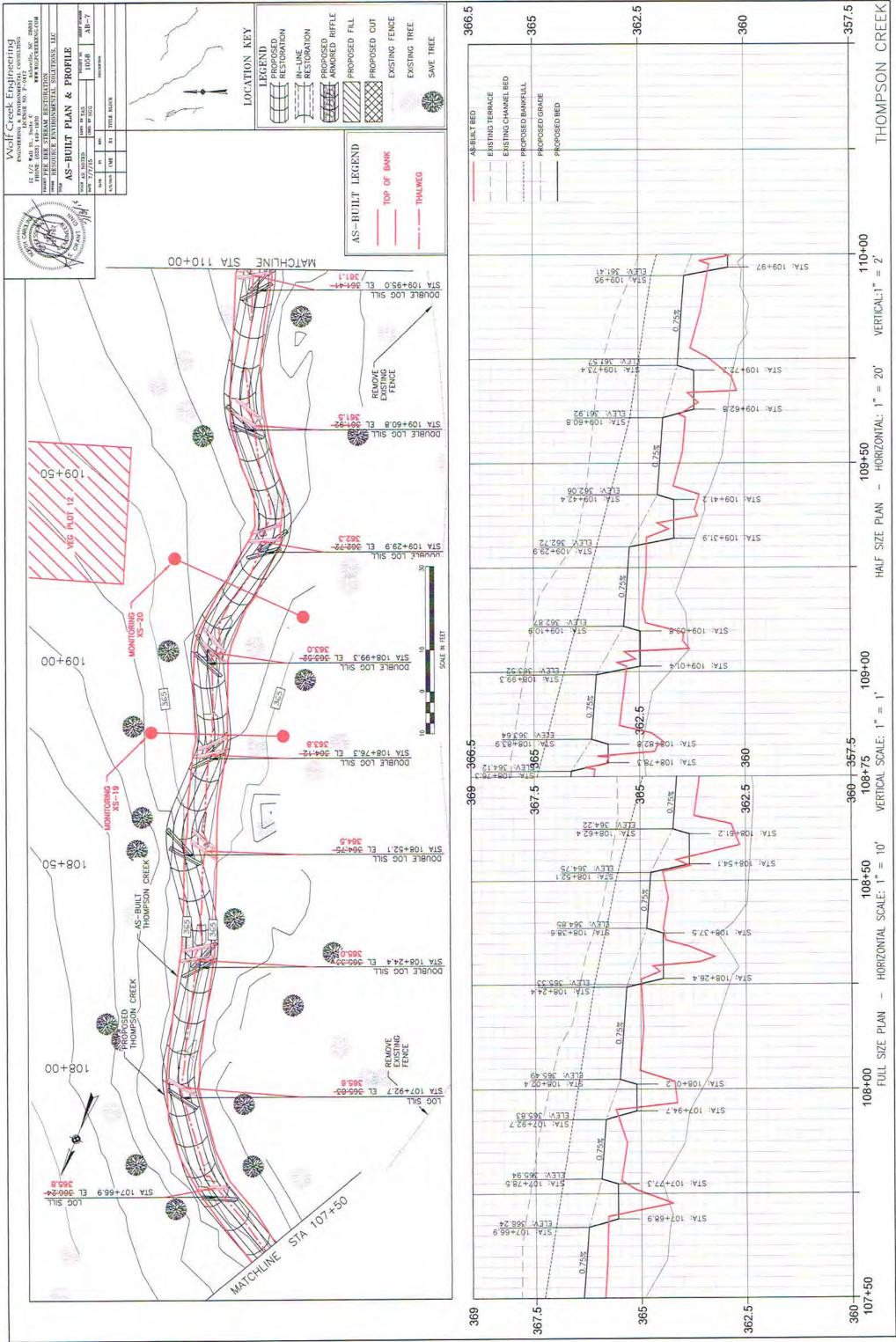
Thompson Branch – Permanent Photo Station 14 Station 105+25 – Downstream

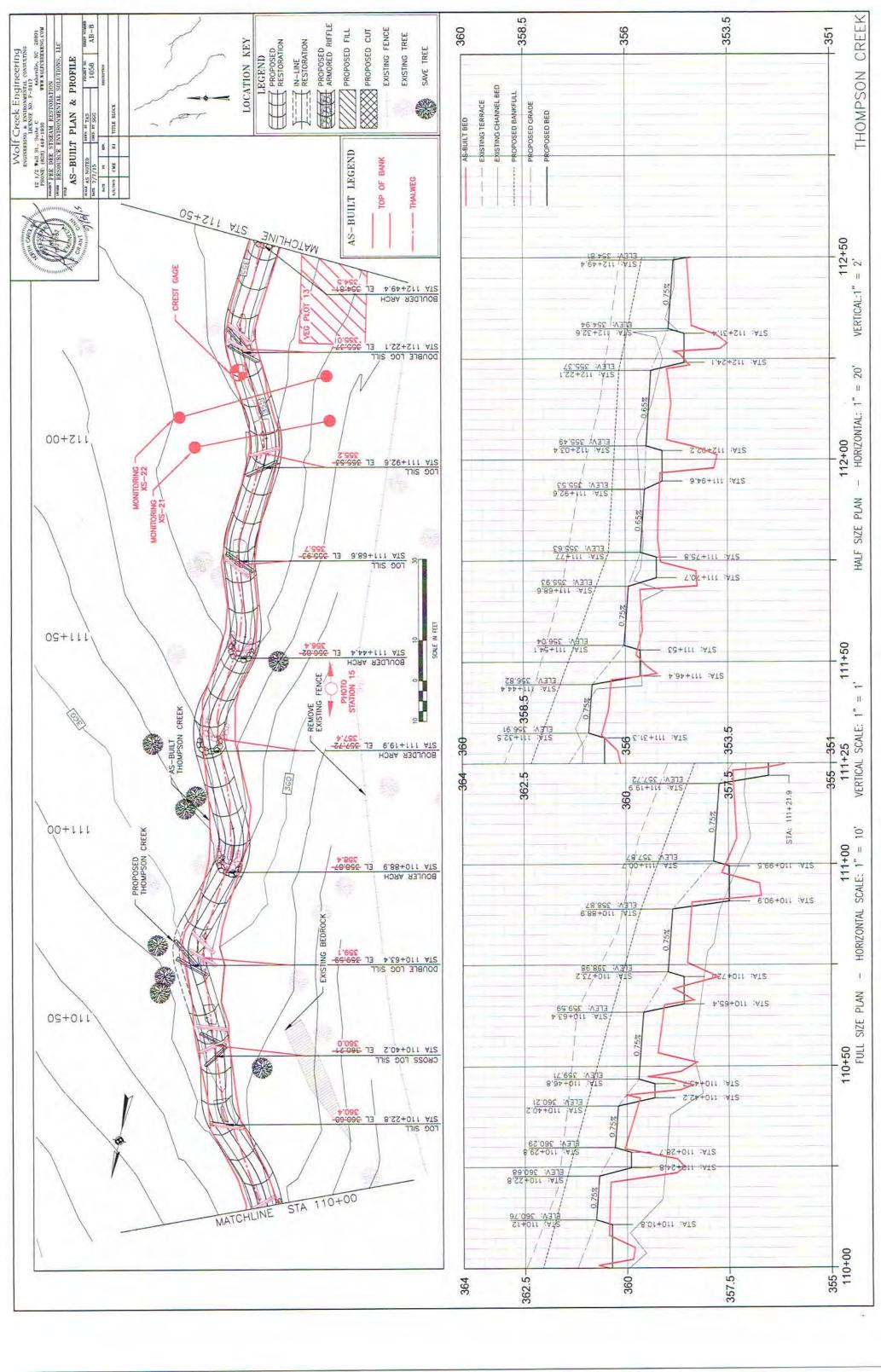

Thompson Branch – Permanent Photo Station 15 Station 115+50 – Upstream

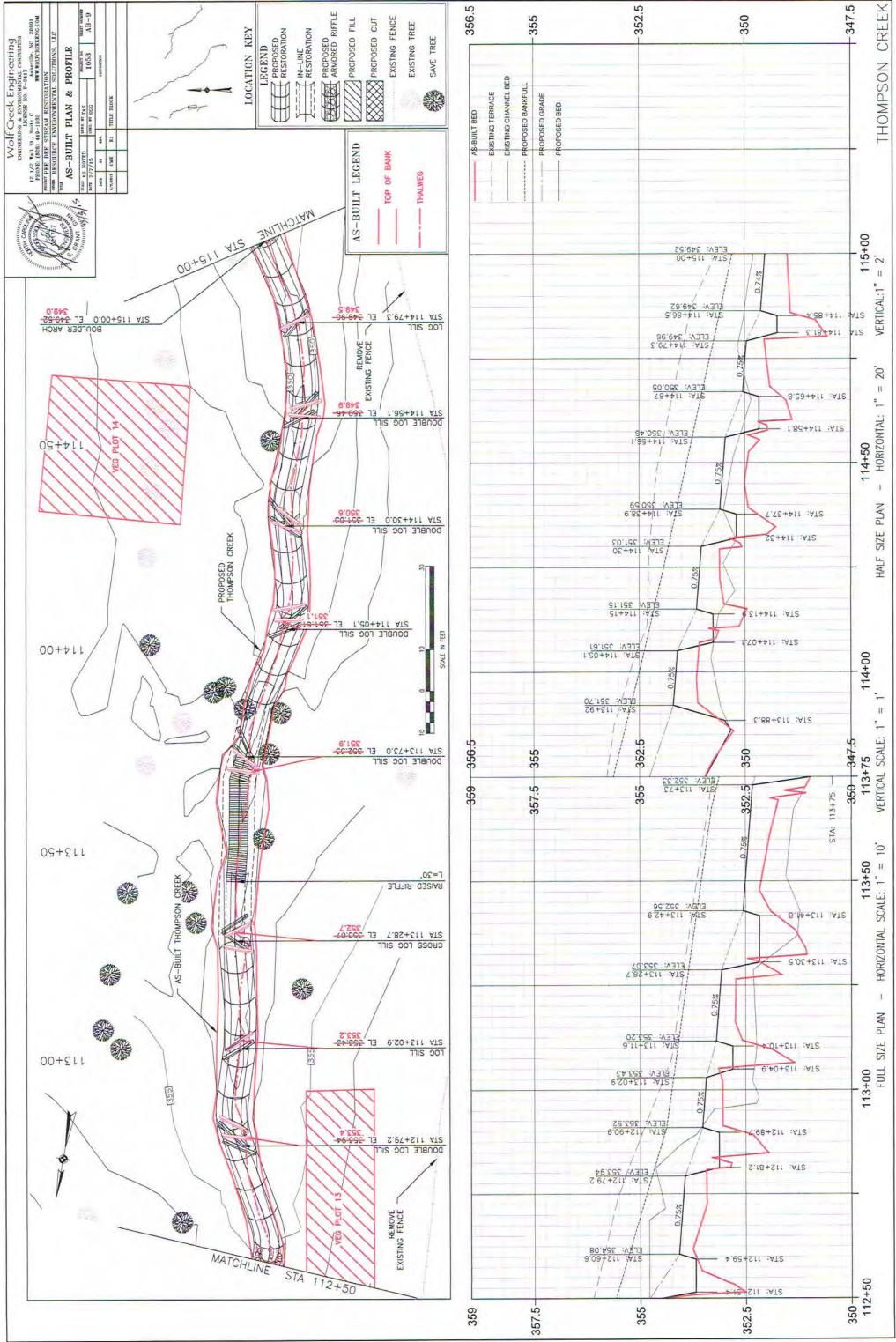


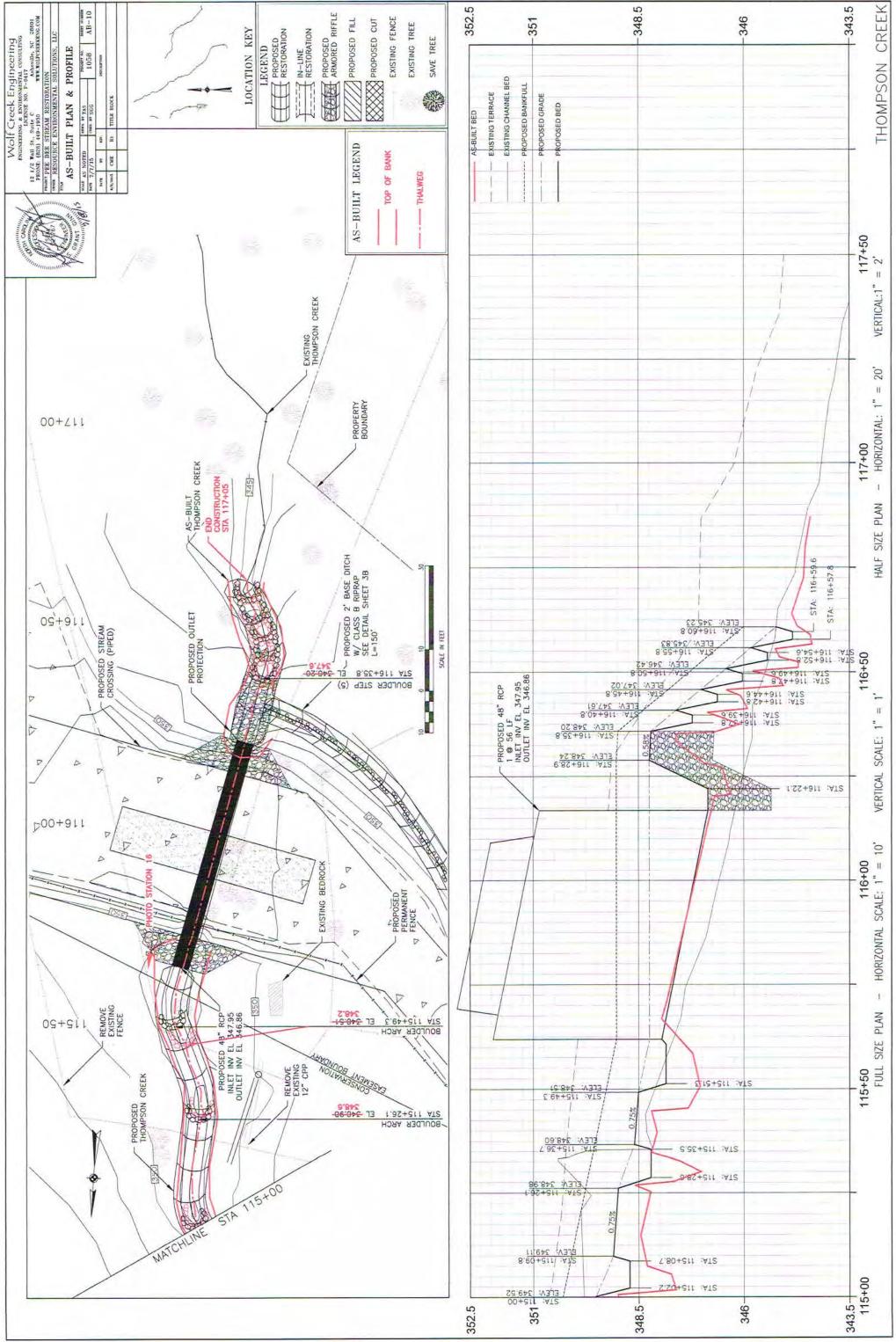

Thompson Branch – Permanent Photo Station 15 Station 111+50 – Downstream

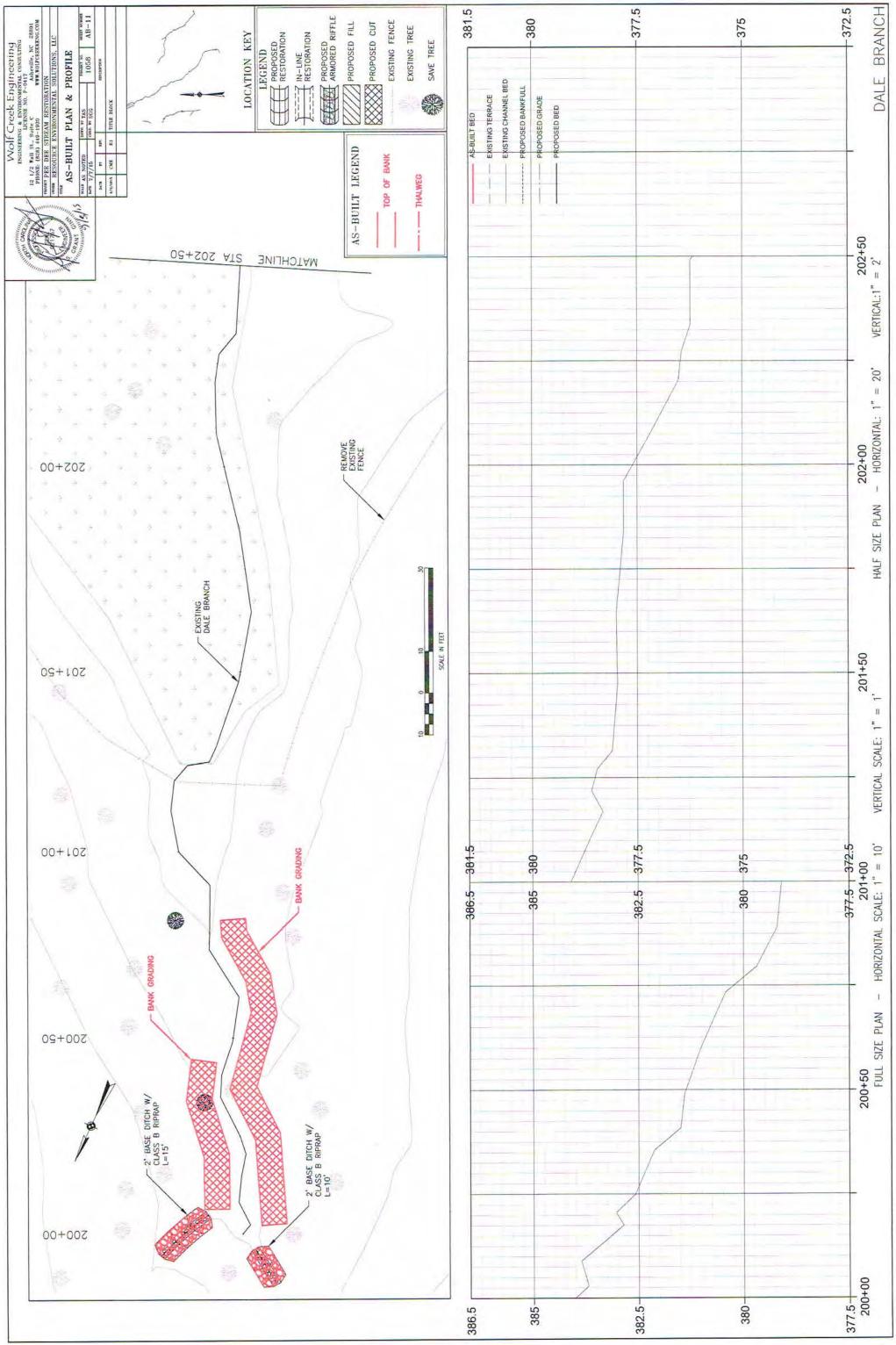


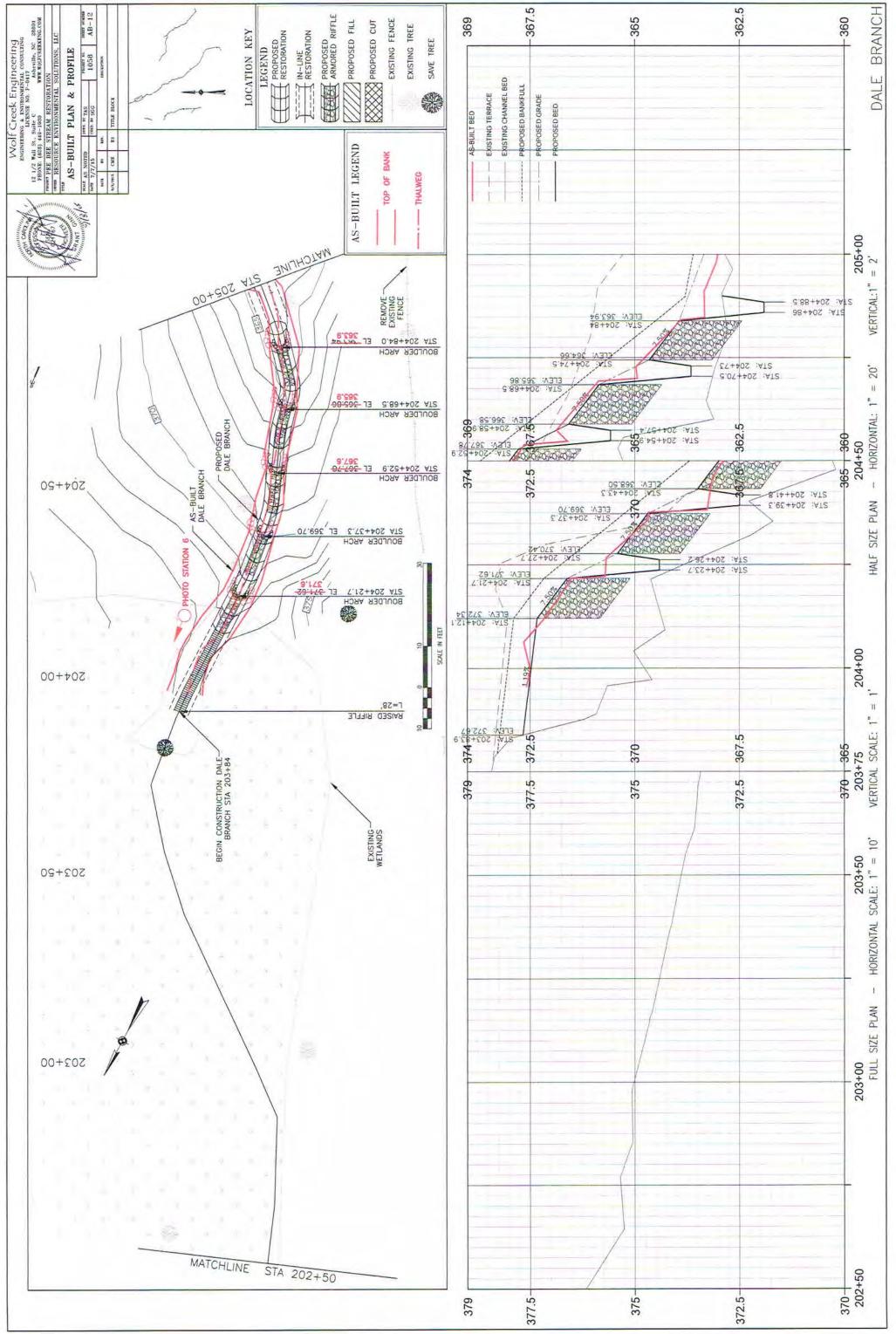

Thompson Branch – Permanent Photo Station 16 Station 115+85 – Upstream

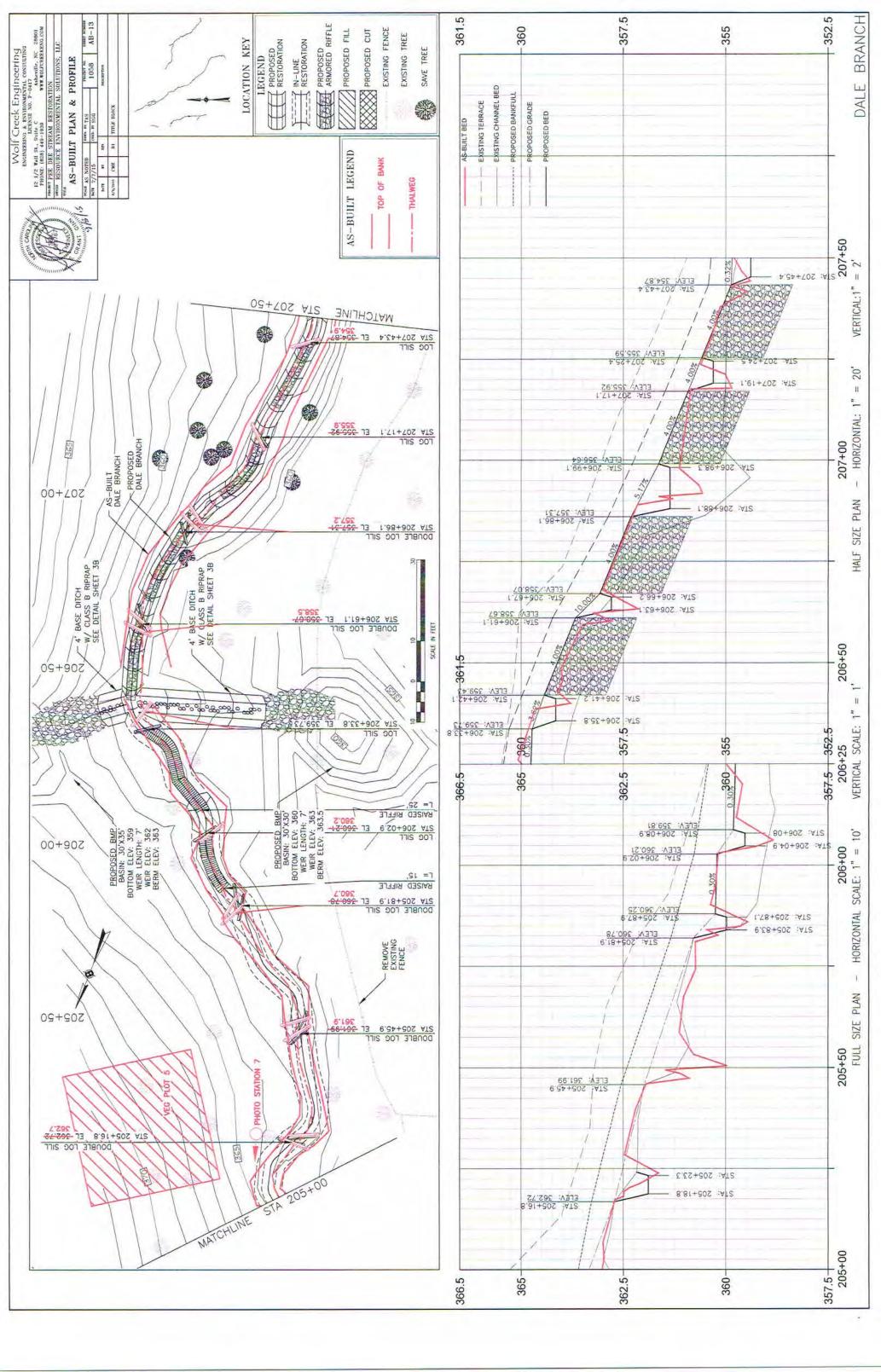


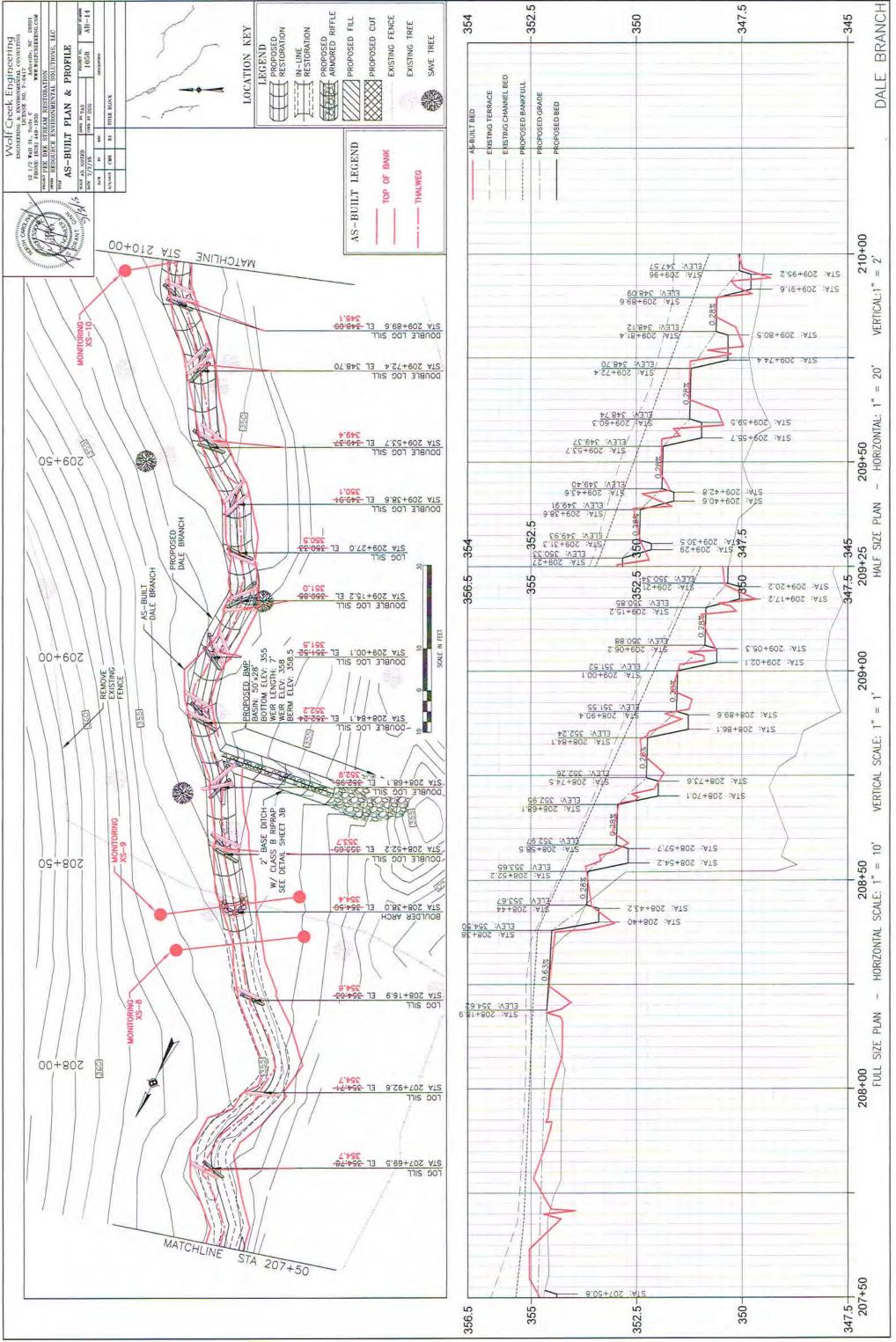




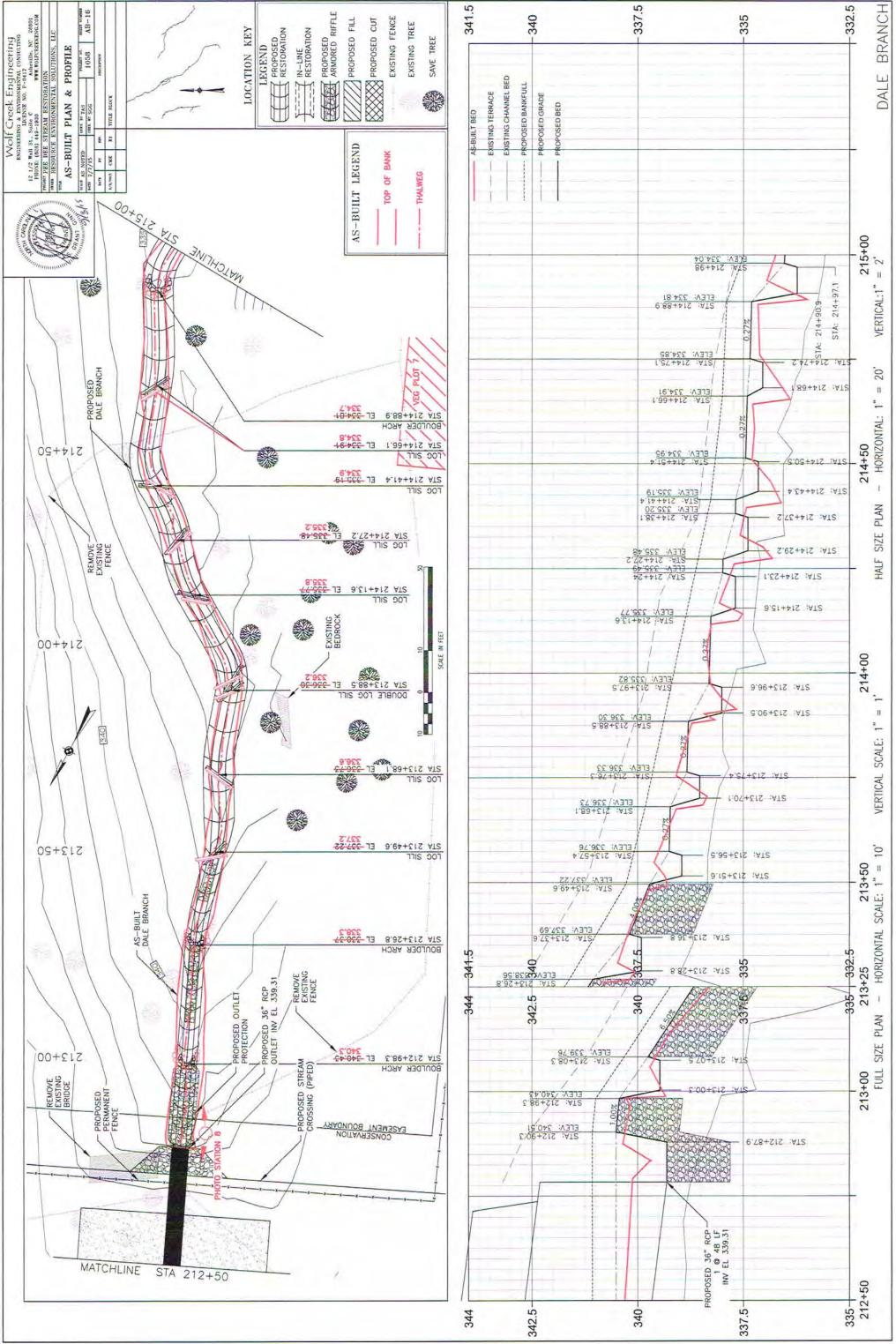


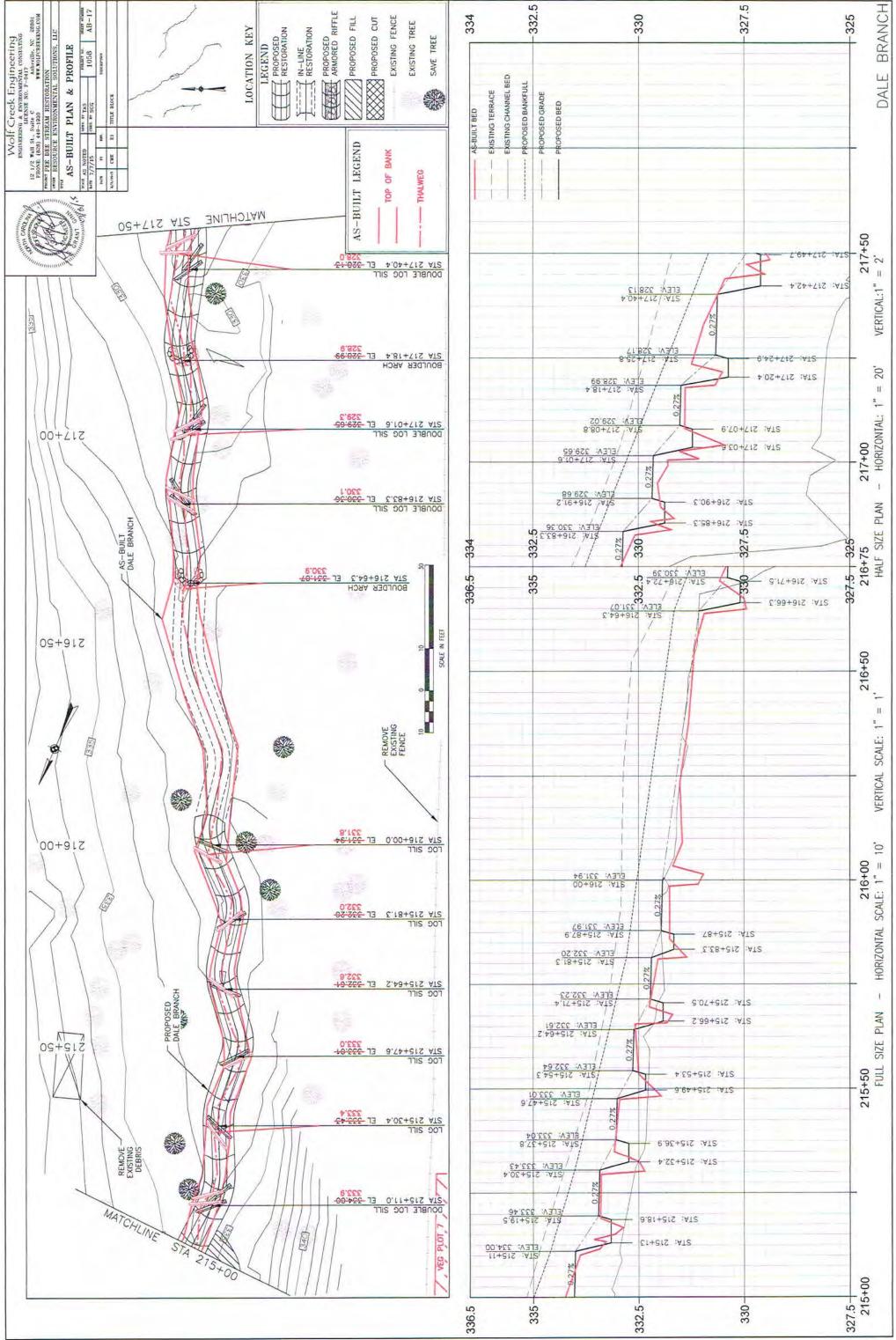




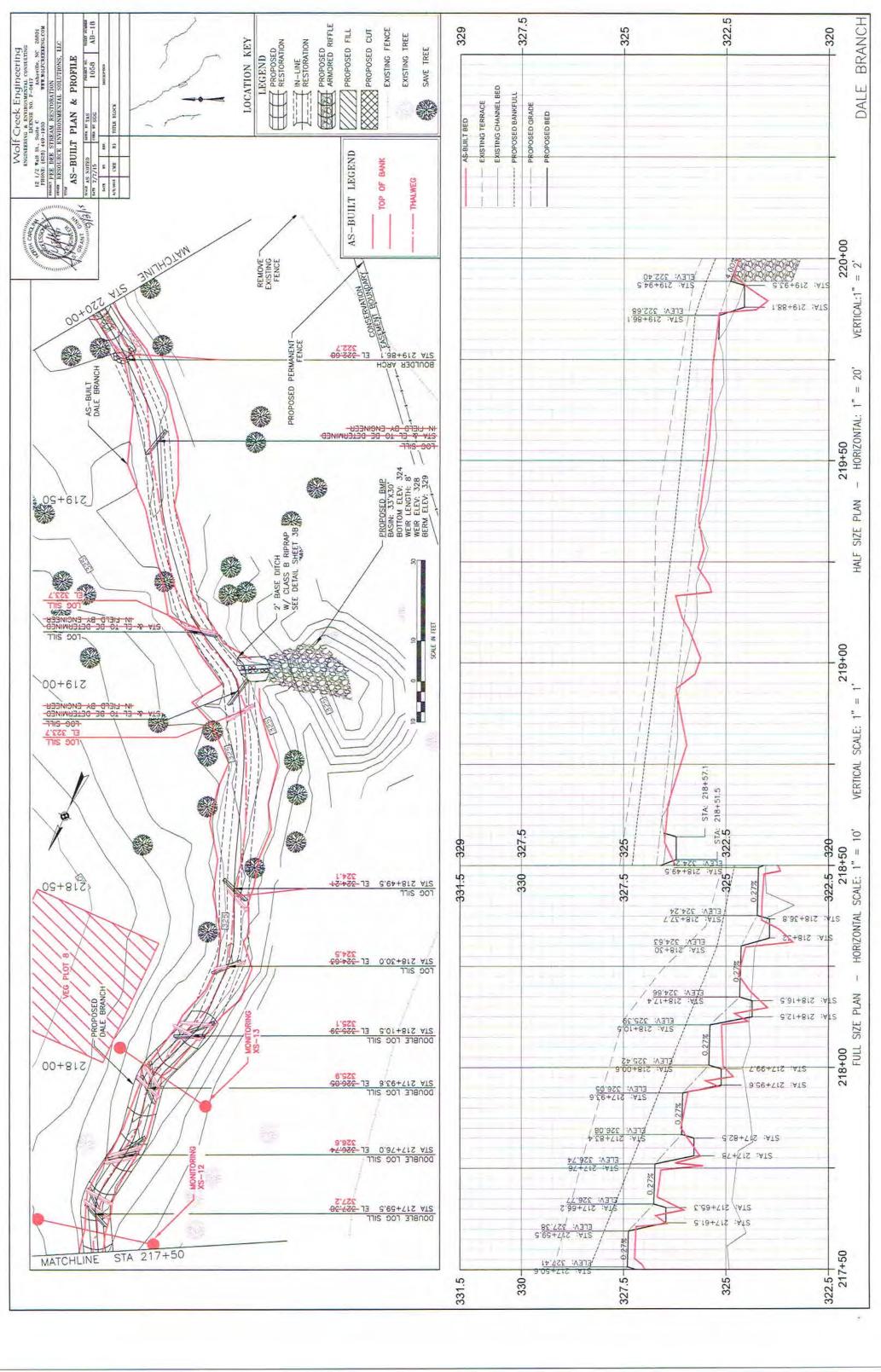


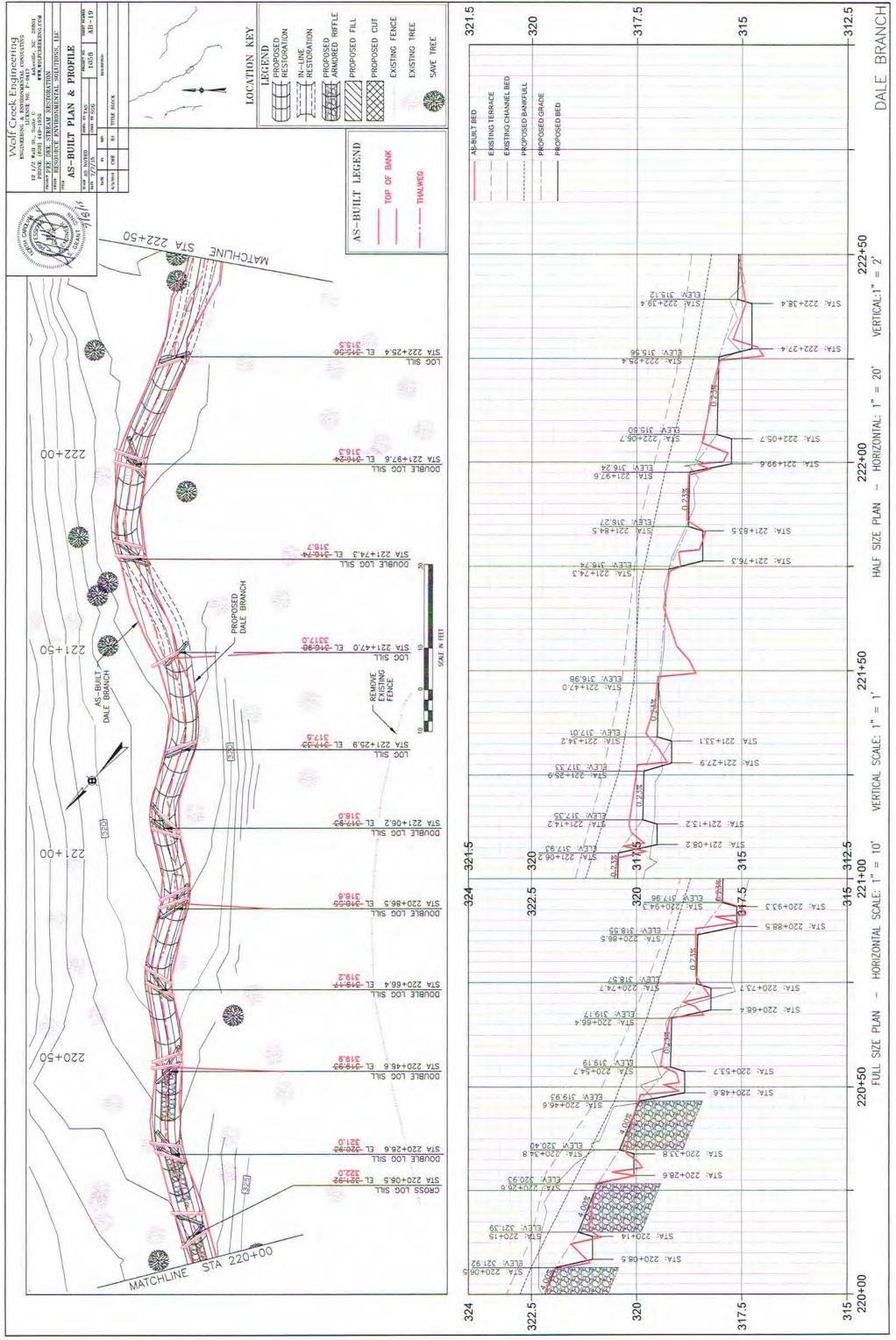


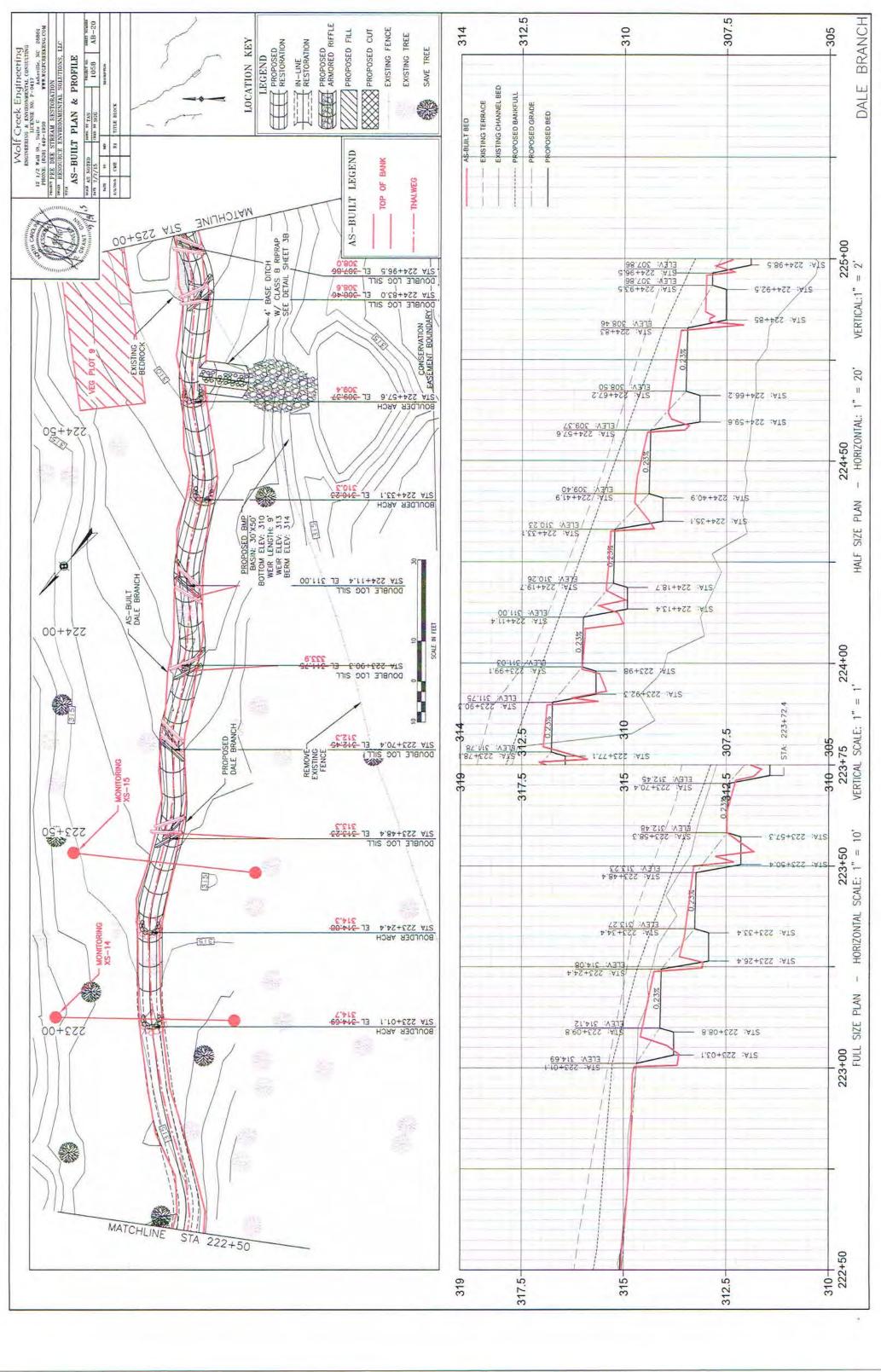


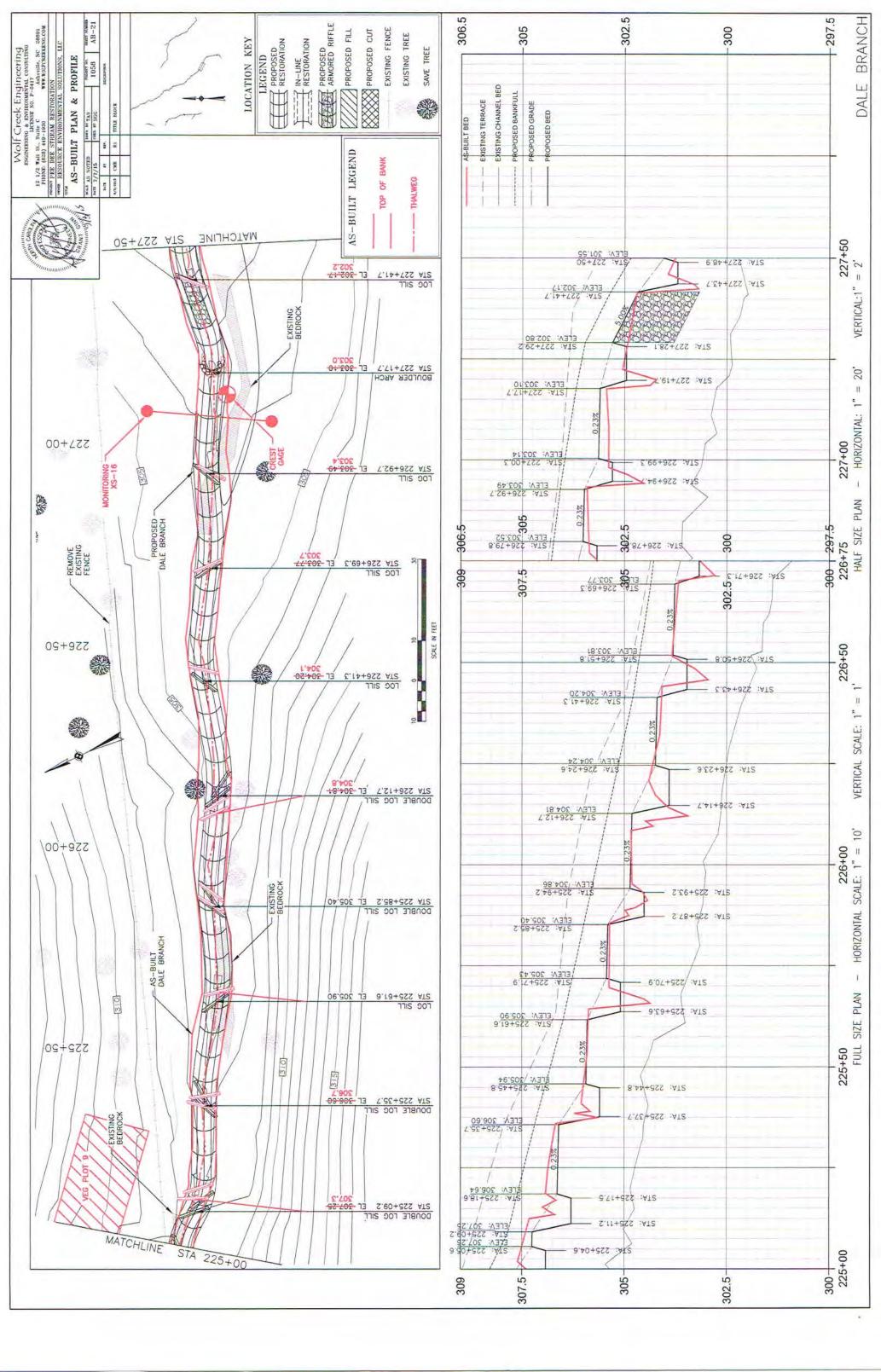


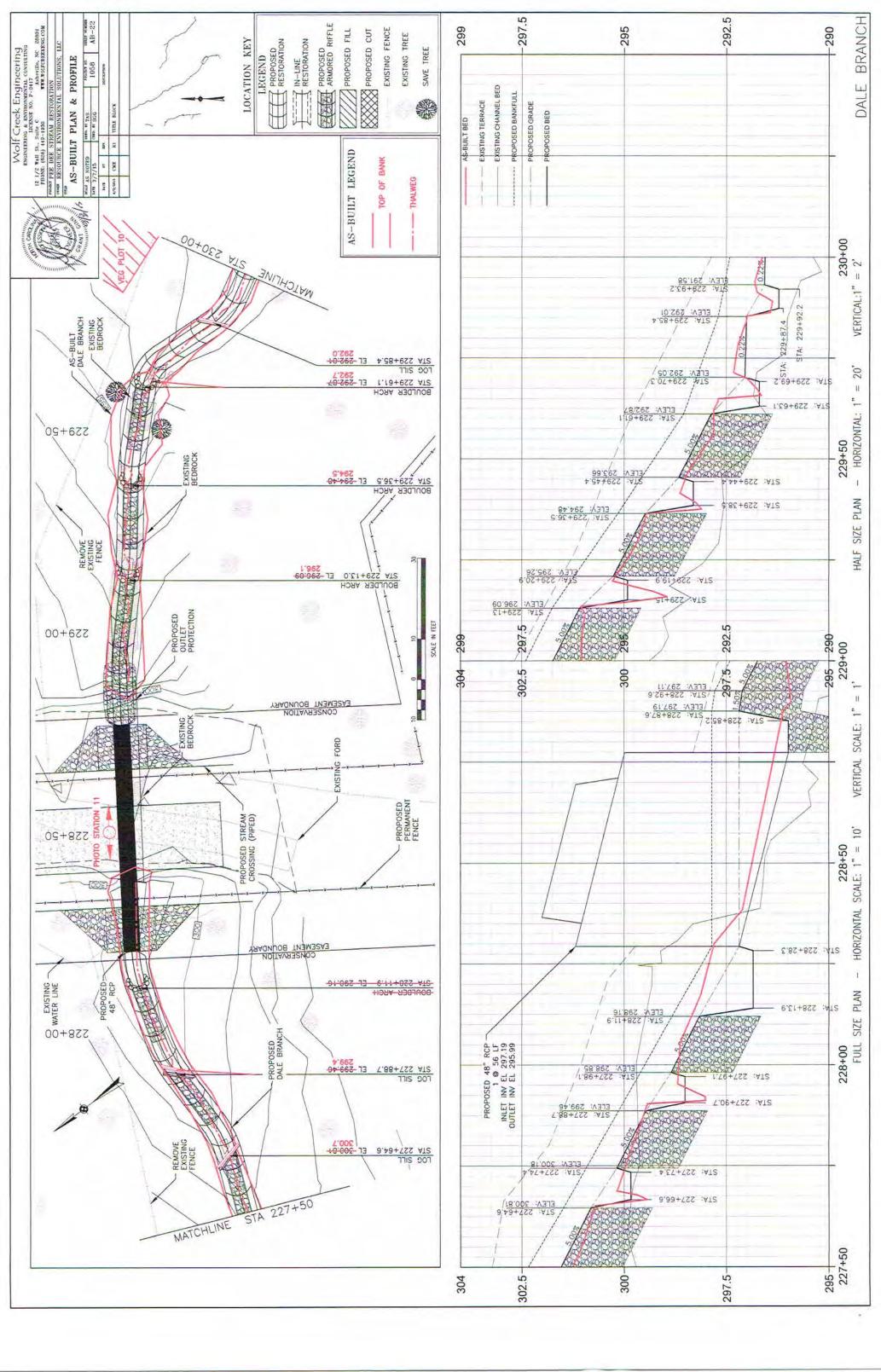
- 20

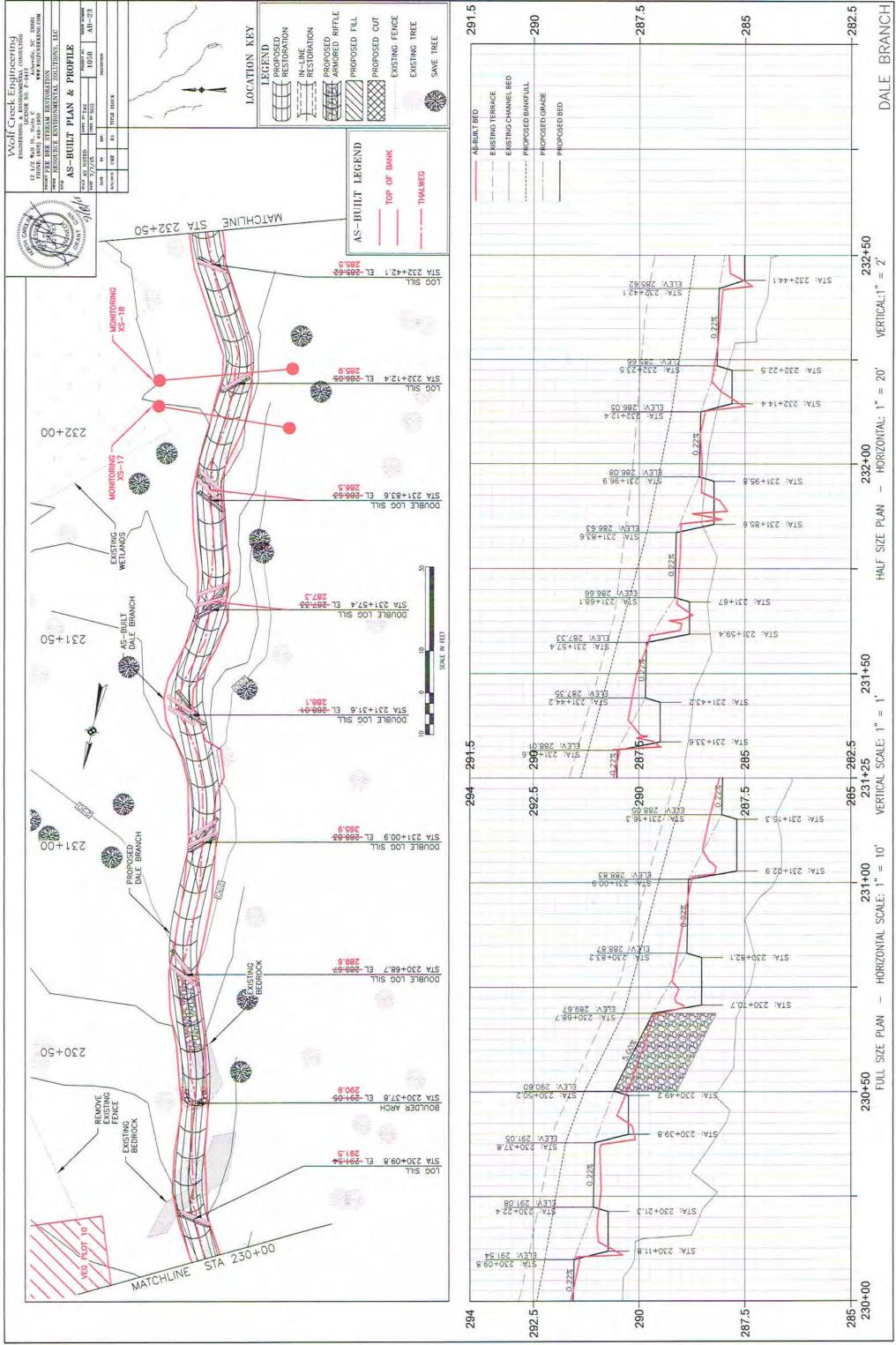


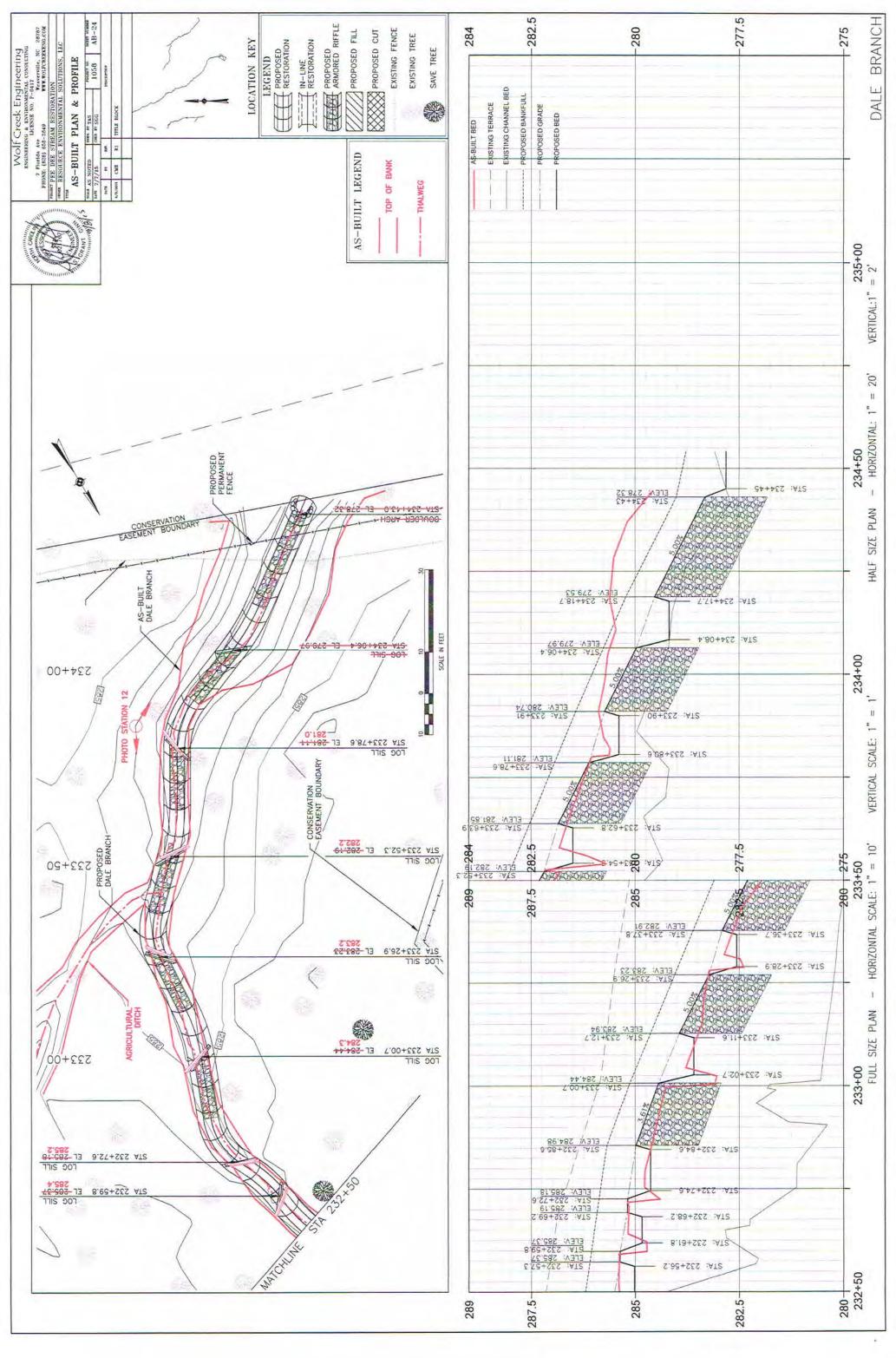

. .

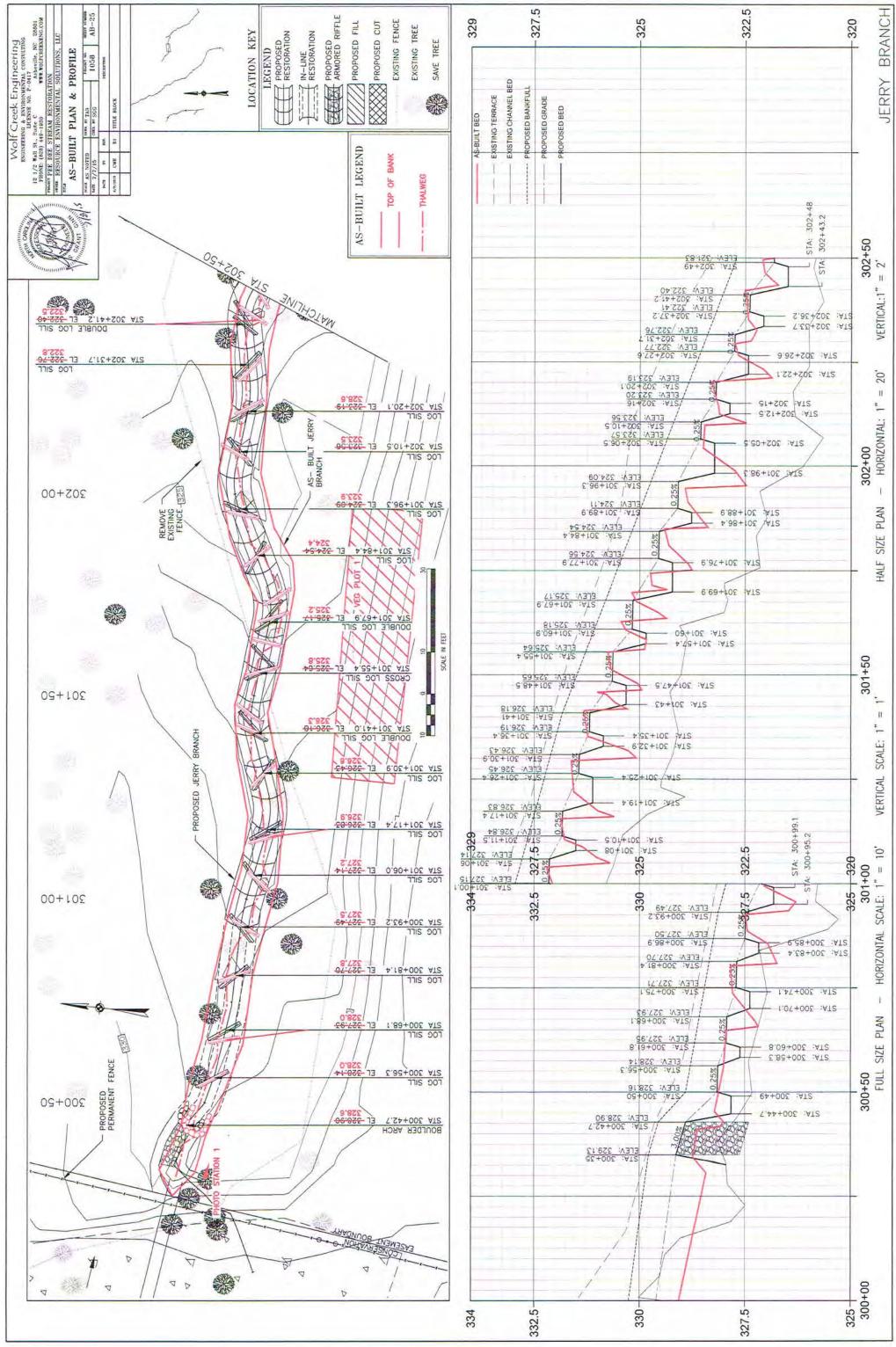


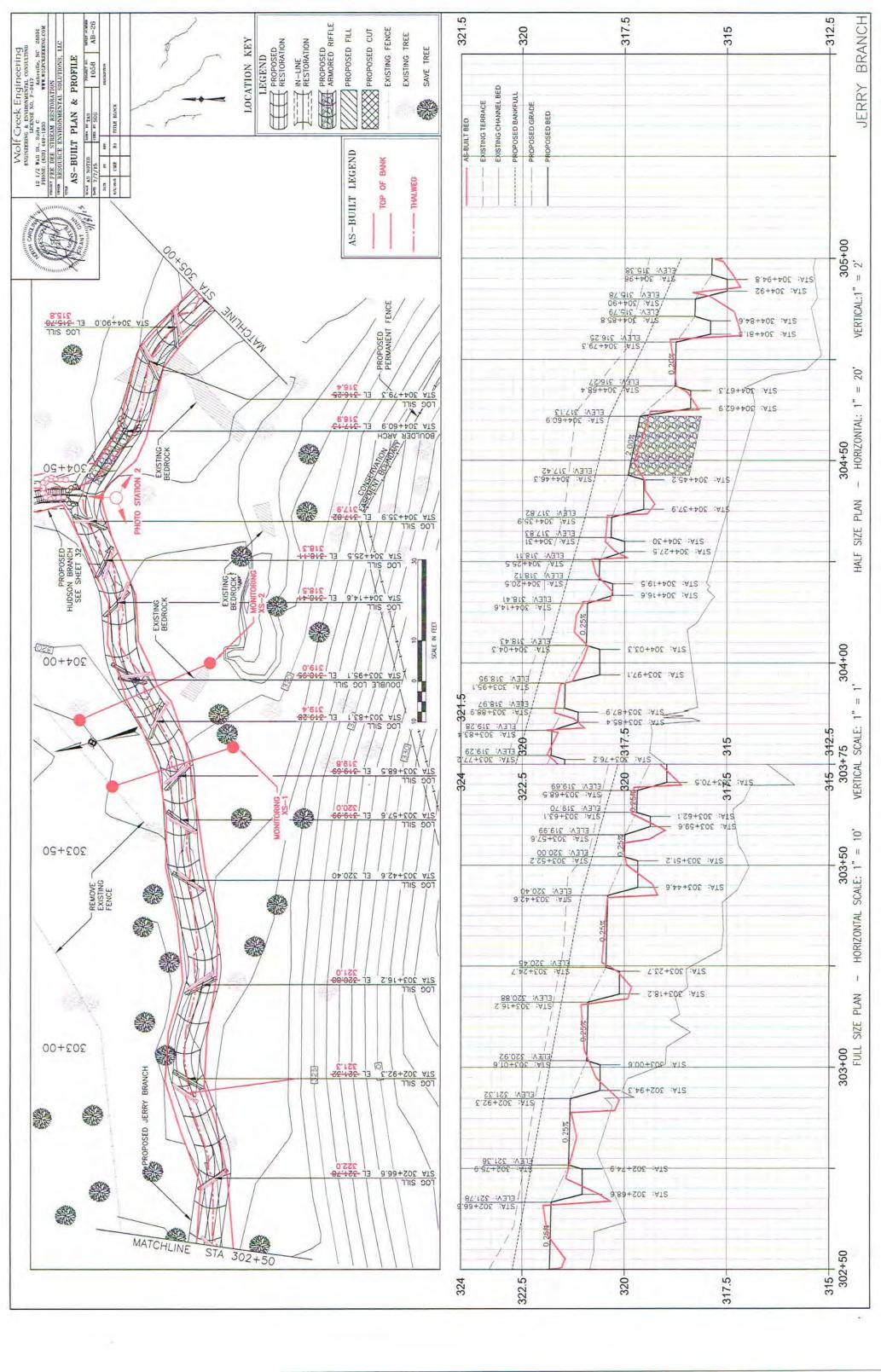


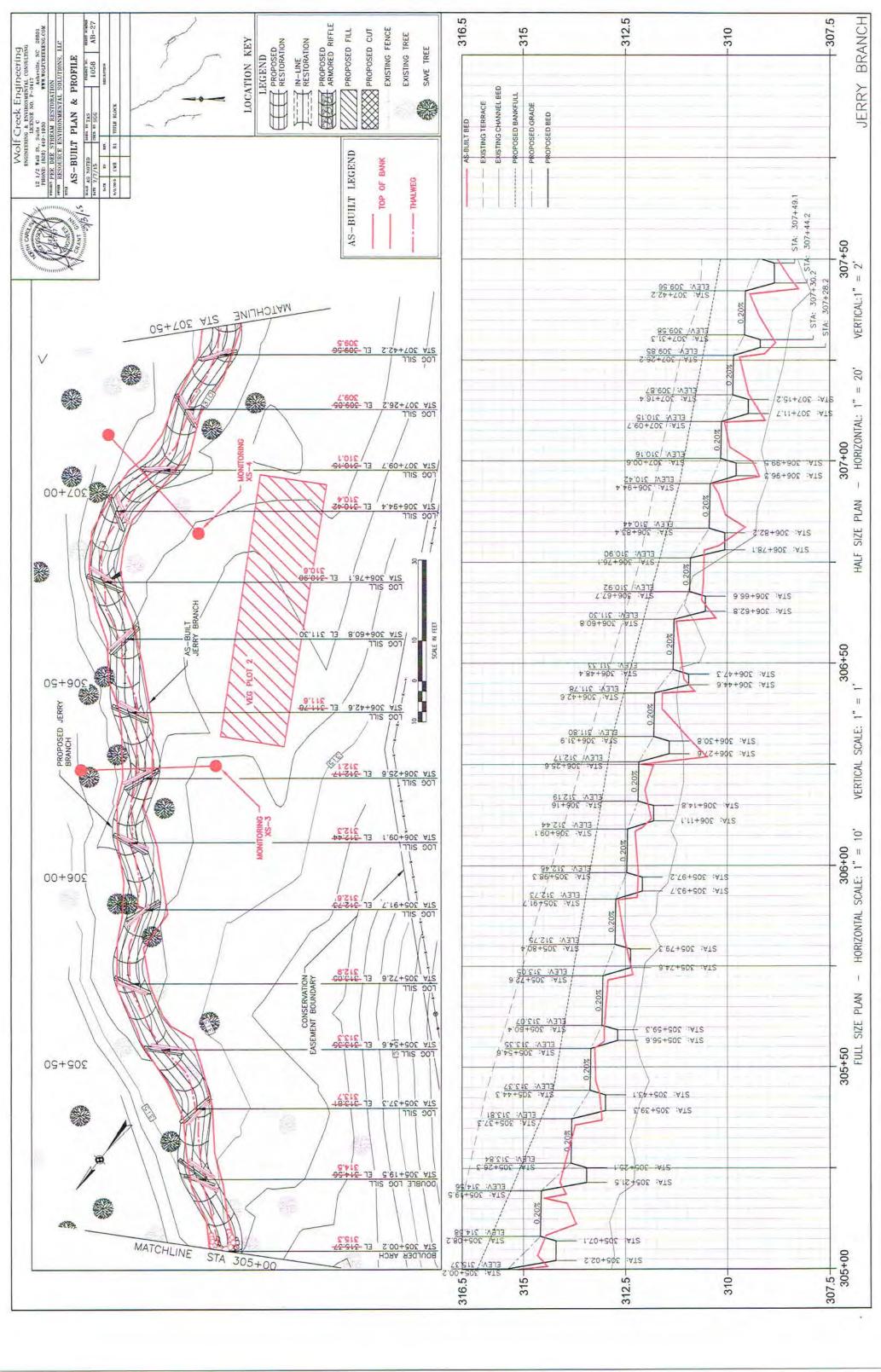

1

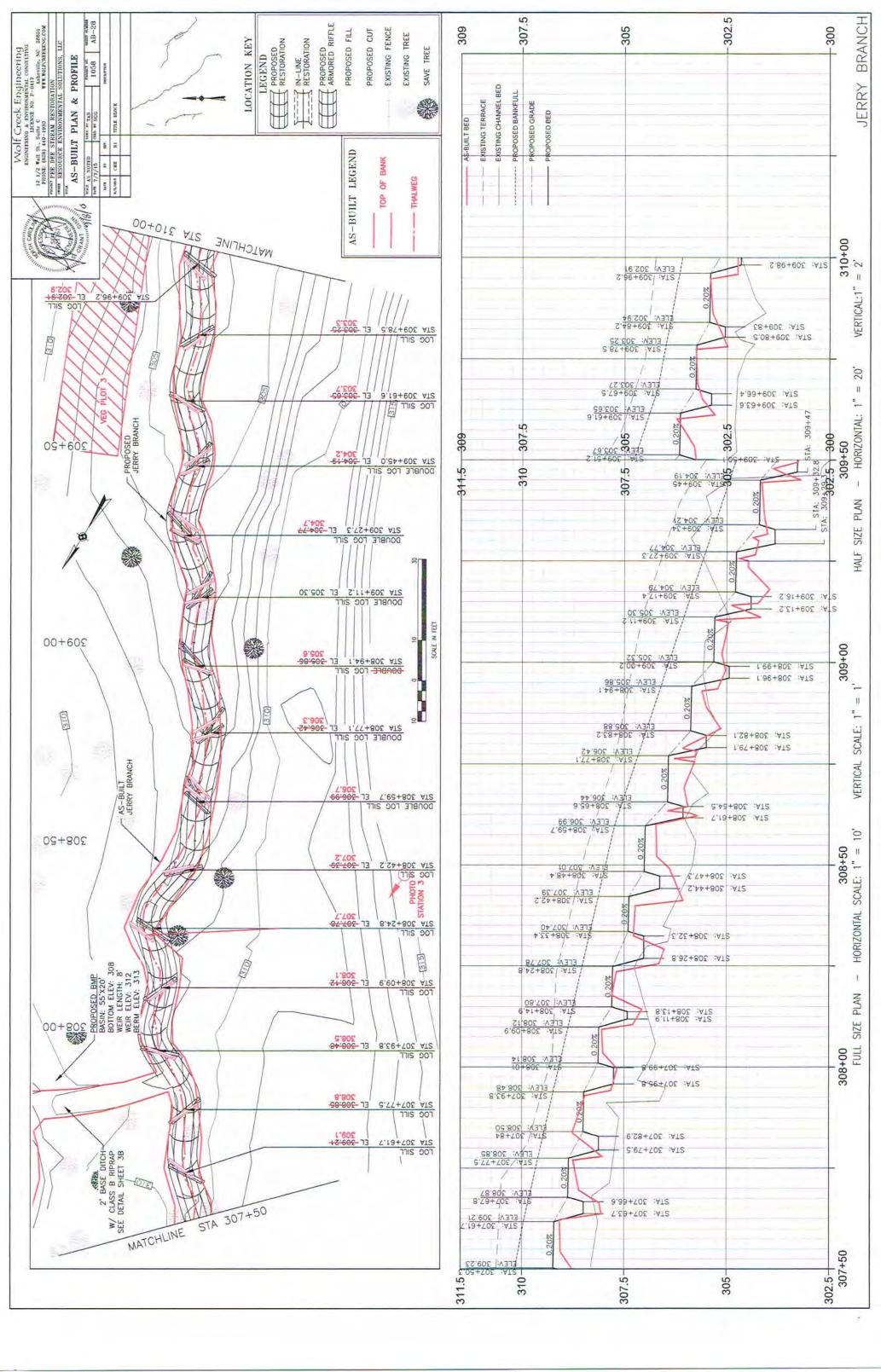


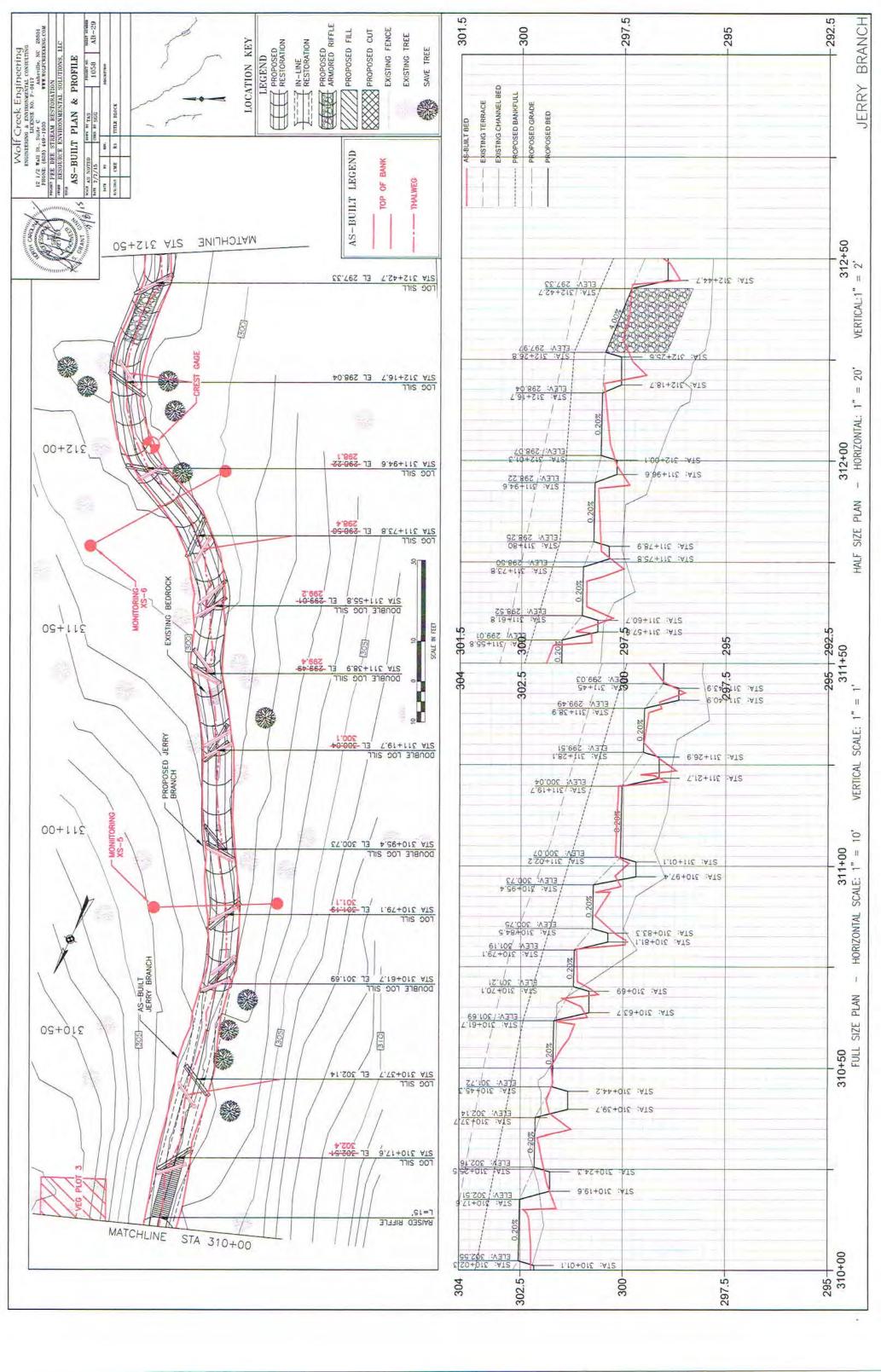


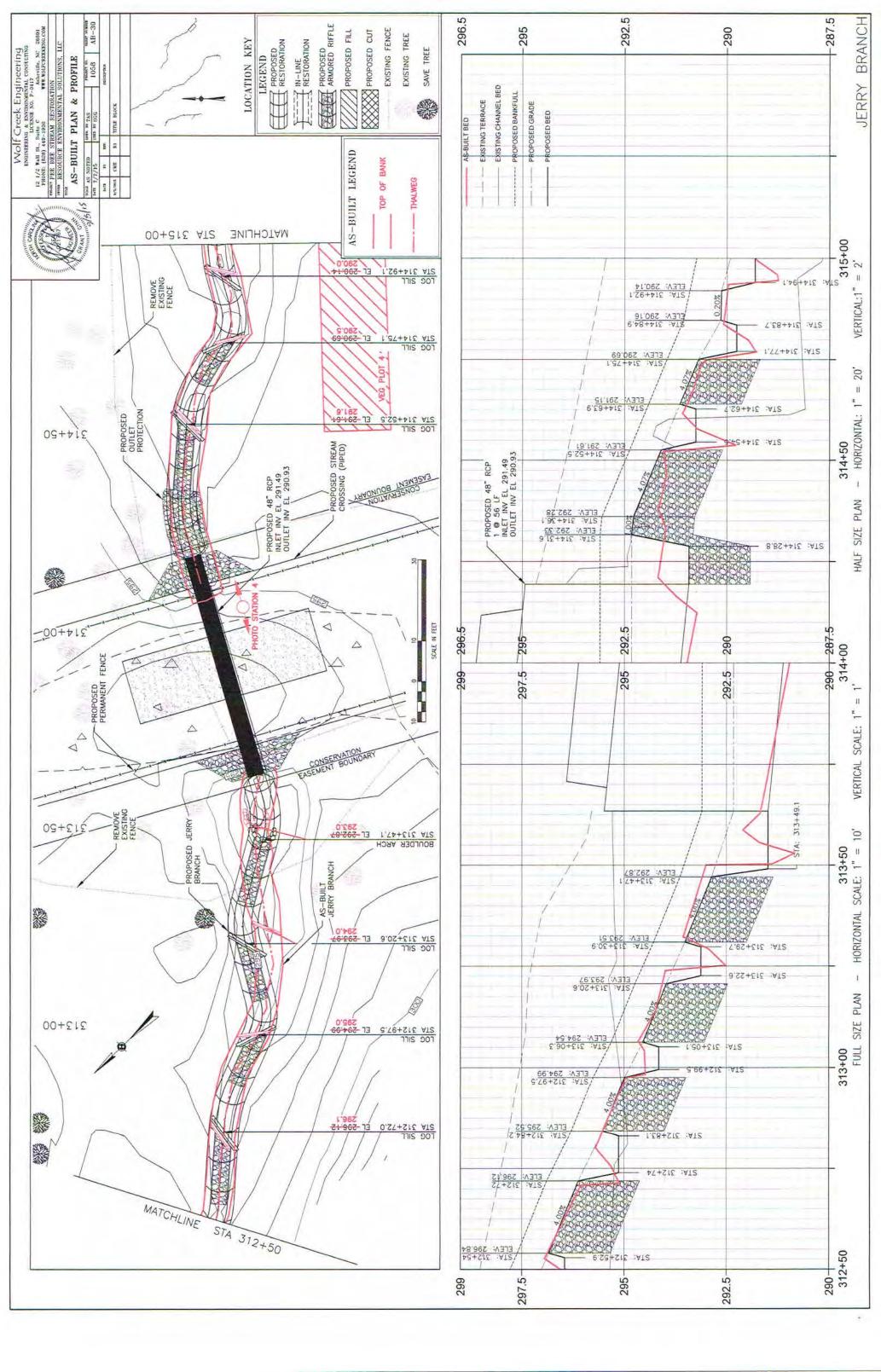


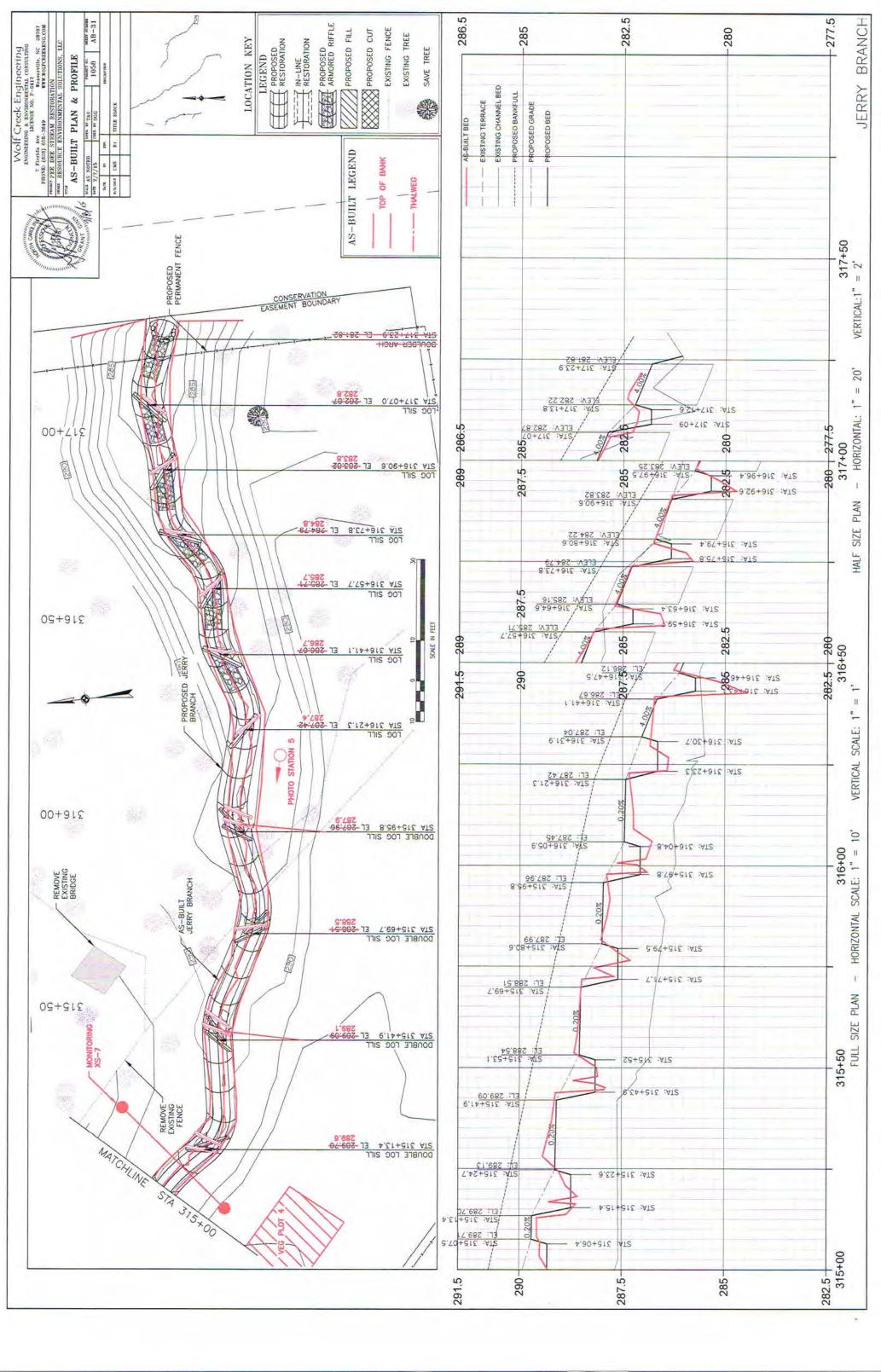


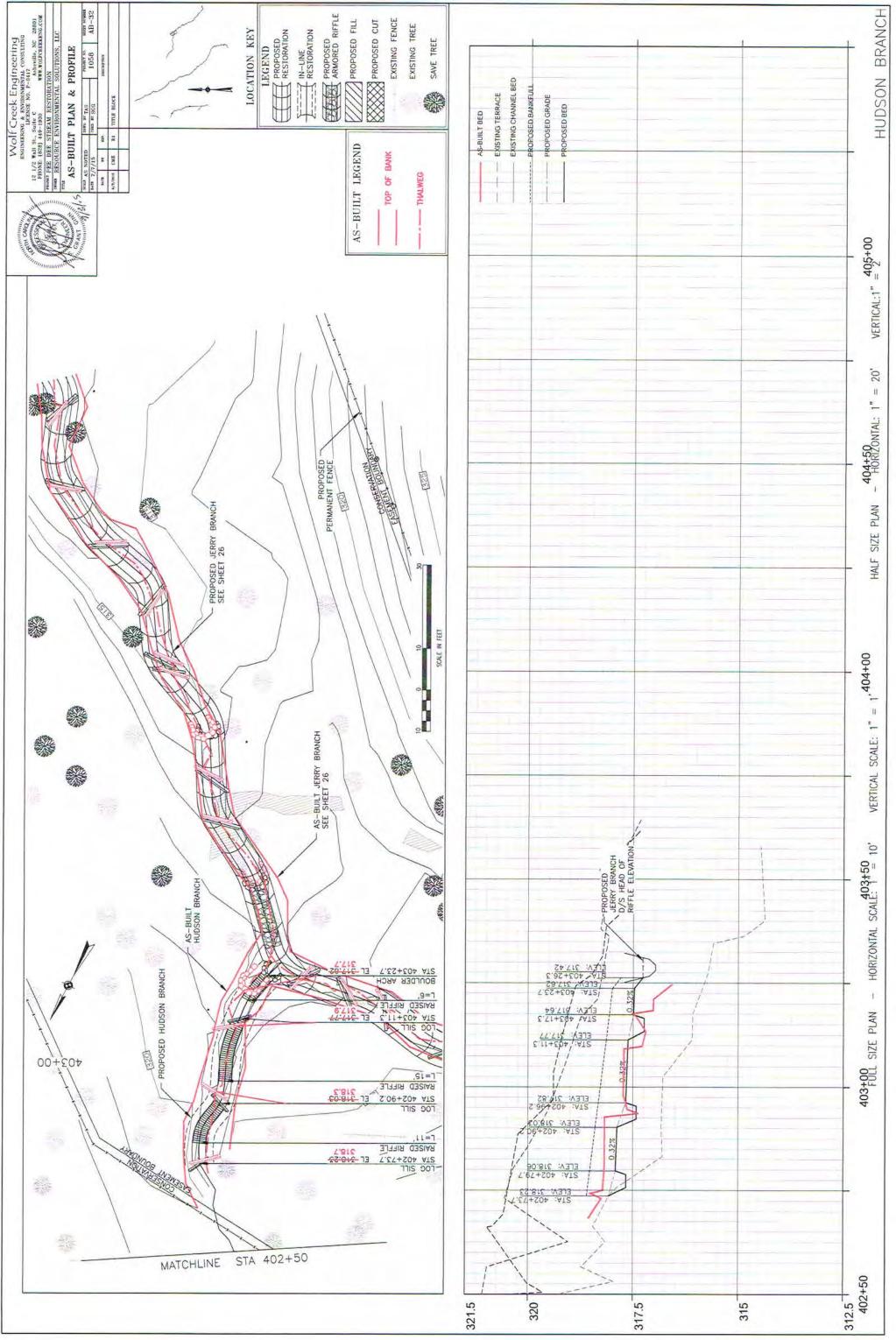












.....